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ABSTRACT

Wireless networks are being applied in various cyber-physical systems and posed to support

mission-critical cyber-physical systems applications. When those applications require reliable and

low-latency wireless communication, ensuring predictable per-packet communication reliability is a

basis. Due to co-channel interference and wireless channel dynamics (e.g. multi-path fading), how-

ever, wireless communication is inherently dynamic and subject to complex uncertainties. Power

control and MAC-layer scheduling are two enablers. In this dissertation, cross-layer optimization

of joint power control and scheduling for ensuring predictable reliability has been studied. With an

emphasis on distributed approaches, we propose a general framework and additionally a distributed

algorithm in static networks to address small channel variations and satisfy the requirements on

receiver-side signal-to-interference-plus-noise-ratio (SINR). Moreover, toward addressing reliability

in the settings of large-scale channel dynamics, we conduct an analysis of the strategy of joint

scheduling and power control and demonstrate the challenges.

First, a general framework for distributed power control is considered. Given a set of links

subject to co-channel interference and channel dynamics, the goal is to adjust each link’s trans-

mission power on-the-fly so that all the links’ instantaneous packet delivery ratio requirements

can be satisfied. By adopting the SINR high-fidelity model, this problem can be formulated as

a Linear Programming problem. Furthermore, Perron-Frobenius theory indicates the characteris-

tic of infeasibility, which means that not all links can find a transmission power to meet all the

SINR requirements. This finding provides a theoretical foundation for the Physical-Ratio-K (PRK)

model. We build our framework based on the PRK model and NAMA scheduling. In the proposed

framework, we define the optimal K as a measurement for feasibility. Transmission power and

scheduling will be adjusted by K and achieve near-optimal performance in terms of reliability and

concurrency.
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Second, we propose a distributed power control and scheduling algorithm for mission-critical

Internet-of-Things (IoT) communications. Existing solutions are mostly based on heuristic algo-

rithms or asymptotic analysis of network performance, and there lack field-deployable algorithms

for ensuring predictable communication reliability. When IoT systems are mostly static or low mo-

bility, we model the wireless channel with small channel variations. For this setting, our approach

adopts the framework mentioned above and employs feedback control for online K adaptation and

transmission power update. At each time instant, each sender will run NAMA scheduling to deter-

mine if it can obtain channel access or not. When each sender gets the channel access and sends a

packet, its receiver will measure the current SINR and calculate the scheduling K and transmission

power for the next time slot according to current K, transmission power and SINR. This adap-

tive distributed approach has demonstrated a significant improvement compared to state-of-the-art

technique. The proposed algorithm is expected to serve as a foundation for distributed schedul-

ing and power control as the penetration of IoT applications expands to levels at which both the

network capacity and communication reliability become critical.

Finally, we address the challenges of power control and scheduling in the presence of large-scale

channel dynamics. Distributed approaches generally require time to converge, and this becomes a

major issue in large-scale dynamics where channel may change faster than the convergence time

of algorithms. We define the cumulative interference factor as a measurement of impact of a sin-

gle link’s interference. We examine the characteristic of the interference matrix and propose that

scheduling with close-by links silent will be still an efficient way of constructing a set of links

whose required reliability is feasible with proper transmission power control even in the situation of

large-scale channel dynamics. Given that scheduling alone is unable to ensure predictable commu-

nication reliability while ensuring high throughput and addressing fast-varying channel dynamics,

we demonstrate how power control can help improve both reliability at each time instant and

throughput in the long-term. Collectively, these findings provide insight into the cross-layer design

of joint scheduling and power control for ensuring predictable per-packet reliability in the presence

of wireless network dynamics and uncertainties.



www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Wireless Cyber-physical Systems

Cyber-physical systems are physical systems integrated with networks and users, and controlled

or monitored by computing process. Cyber-physical systems have applications in a wide variety

of areas such as transportation, manufacturing, energy and etc [2][3][4]. Communications between

sensors, controllers, and systems still primarily use wired networking today, however, wireless solu-

tions have long been considered a good technical solution due to its reduced costs, easy deployment

and improved long-term reliability.

Automotive manufactures are using wireless networks as media to deliver on-board diagnostic

data to detect equipment failures, safety risks, and defects [5]. Commercial transportation compa-

nies are utilizing sensors from vehicles to identify potential breakdowns and perform preventive and

predictive maintenance [6]. For oil and gas producers and refineries, minimizing systems downtime

is important, and the industry is using more and more sensors, networks, and analytic tool to

generate predictive insight into equipment performance and maintenance. To increase efficiency

in factories, wireless technology is essential for communicating with automated mobile equipment,

such as shuttle systems, so that they can easily move around the automated storage and retrieval

areas. Reliable wireless communication is expected to enable technicians wearing AR head-mount-

displays in factories to communicate with remote experts in troubleshooting [7].

Wireless cyber-physical systems are mission-critical and often-times safety-critical. They gener-

ally have more strict requirements on reliability and latency compared to human-oriented networks.

The low cost, installation benefits and the scaling ability provided by the wireless sensors have in-

creased the interest in the research of process control using short-range wireless technologies, e.g.,

IEEE 802.15.4. However, new measurements from sensors should arrive at the controller within a

specific time interval, sometimes even smaller than 500 ms, to maintain stability of the control loop.
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Moreover, a packet delivery ratio/reliability with 99.999% and air-interface delay with 1 ms may

be required as well as indicated in [8][9]. Ultra-reliable and low-latency wireless communication are

becoming key metrics and challenges to enable large-scale deployment of wireless cyber-physical

systems.

1.2 Wireless Communication Reliability

1.2.1 Path loss, shadowing and multipath fading

Wireless communication is inherently dynamic and subject to complex uncertainties. Due

to the broadcast characteristic of electromagnetic wave, a radio link in a wireless network may

suffer from signal reflection, diffraction, and scattering from surrounding objects when the signal

propagates from a transmitter to its receiver. These phenomena result in channel variation and

greatly determine wireless communication reliability.

Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromag-

netic wave as it propagates through space. Path loss is the main energy attenuation between the

transmitter and the receiver for any link. Path loss can be represented by the path loss exponent,

whose value is normally in the range of 2 to 4 [10]. Some experimental results can be found in [11].

Shadowing as another source of channel variation comes from large obstacles or buildings and is

like the effect of clouds partly blocking sunlight [10]. The duration of shadowing lasts for multiple

seconds or minutes. The signal radiated by a transmitter may also travel along many and different

paths to a receiver simultaneously; this effect is called multipath fading. The differences in delays

among different paths will cause distortion of the original sinusoidal signal in terms of amplitude

and phase. Multipath fading dominates instantaneous channel variation.

Let us explain multipath fading with the well-known example where a receiver is moving. If the

receiver moves with velocity v, there may exist two waves along two different directions, one with

a frequency of fc(1 − v/c) and experiencing a Doppler shift Dmin := −fcv/c, and the other with

a frequency of fc(1 + v/c) and experiencing a Doppler shift Dmax := +fcv/c. The frequency shift

fm = fcv/c is called Doppler shift. Here, fc is the carrier frequency, and c = 3 × 108m/s is the
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speed of light. Doppler spread is the biggest difference between the Doppler shifts. We can write

Ds = Dmax−Dmin, where Dmax is the maximum Doppler shift, and Dmin is the minimum Doppler

shift. The frequency of channel variation depends on Doppler spread. The coherence time Tc of a

wireless channel is defined as the interval over which the magnitude of signal changes significantly.

Assuming a mobile is moving at 60 km/h and the carrier frequency fc is 1800 MHz, the Doppler

shift is round 100 Hz, and the coherence time is approximately 1.25 ms. The Doppler shift and

coherence time are important metrics to represent channel variation. What needs to be emphasized

is that receiver or transmitter motion is the most important factor for channel variation, but the

movement of surrounding objects or other changes in propagation path can also result in multi-path

fading if the propagation path delay or propagation path itself is experiencing time-varying change.

Fig. 1.1 and Fig. 1.2 show instantaneous channel variation and demonstrate the difference between

fading with different Doppler shift. From the figure, we can see that the received power with 100 Hz

Doppler shift has much faster channel change than that with 10 Hz Doppler shift. These Doppler

shifts correspond to velocities of about 60 km/h (40 mph) and 6 km/h (4 mph), respectively at

1800 MHz.

There are statistical models to represent shadowing and fading. Although statistical models

cannot accurately represent actual systems, thanks to these models we have the opportunities to

obtain a clearer perspective and understanding of wireless communication systems. In the channel

statistical models, we take each link’s fading at any time t as an independent and identically

distributed (i. i. d) random variable. Shadowing is usually modeled as a random variable with log-

normal distribution. Typical fading distributions are Rician fading, Rayleigh fading, and Nakagami

fading [12]. When there is a line-of-sight path between transmitter and receiver, or there is a

specular reflection path between transmitter and receiver, the channel is represented by a Rician

fading model. When there is not a main path component, we can think of the channel consisting

of many small paths. Rayleigh fading model is the most widely used model. The Nakagami model

is known to provide a closer match to some measurement data than either Rayleigh or Rician
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Figure 1.1: Channel variation with 10 Hz Doppler Shift

Figure 1.2: Channel variation with 100 Hz Doppler Shift
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Figure 1.3: The Nakagami pdf with Ωp = 1.

distributions [13]. The Nakagami model can be used to model the channel which is more or less

severe than Rayleigh fading.

The magnitude of the received complex envelop with a Rayleigh distribution can be written as

fσ(x) =
x

σ
exp{−x

2

2σ
} (1.1)

where σ is the standard derivation. The corresponding squared envelope is

fσ2(x) =
1

Ωp
exp{− x

Ωp
} (1.2)

where Ωp = 2σ. We can see that fσ2(x) is an exponential distribution. This distribution is very

important. We will discuss it later.

Nakagami fading describes the magnitude of the received complex envelop as

fσ(x) = 2(
m

Ωp
)m
x2m−1

Γ(m)
exp{−mx

2

Ωp
}, m ≥ 1/2. (1.3)

where Γ(m) is Gamma distribution. With Nakagami fading, the squared envelope has the Gamma

distribution

fσ2(x) = (
m

Ωp
)m
xm−1

Γ(m)
exp{−mx

Ωp
} (1.4)
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The Nakagami model defines a Nakagami shape factor m. When m = 1, the Nakagami dis-

tribution becomes the Rayleigh distribution, and when m → ∞ the distribution approaches an

impulse (no fading). The Nakagami model has been recently used in vehicular networks. We plot

the Nakagami pdf for comparison and analysis as in [12]. From Fig. 1.3, we see that the Rayleigh

distribution (i.e., when m = 1) covers a wide range of values while the value of Nakagami distribu-

tion is mostly around the mean value. The physical meaning here is Rayleigh channels generally

have more frequent fluctuation with larger variation compared to Nakagami fading.

The squared envelope is important for the performance analysis because it is proportional to the

received signal power and, hence, the received signal-to-interference-plus-noise ratio. Considering

path loss, shadowing and multi-path fading we discuss above, the received signal at any receiver

in wireless cyber-physical systems would be a random signal and change over time. The effect of

path loss, shadowing and multiple-fading can be represented in Fig. 1.4.

Figure 1.4: The effect of path loss, shadowing and multipath fading

1.2.2 Co-channel interference

There is no unified network architecture for cyber-physical communication systems. Different

cyber-physical application systems may have different network architectures. For example, wireless

sensor networks’ architecture tends to be hierarchical, where the whole network is divided into
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multiple levels and all nodes in lower levels converge to higher levels and ultimately to a sink.

Vehicular networks are currently designed as vehicle-to-vehicle communication networks and there

are no central control nodes. But it is very likely in the future that vehicular networks will evolve

into a mixed and more complicated network architecture with vehicle-to-vehicle and vehicle-to-

infrastructure (or vehicle-to-cell) networks coexisting. The vehicle-to-infrastructure networks are

more like cluster-based networks just as cellular networks while vehicle-to-vehicle networks are real

ad hoc networks. However, we can model the whole network or a part of the whole network as an ad

hoc network if we only consider co-channel interference. Indeed, power control is originally used to

manage co-channel interference. It is quite reasonable to model all cyber-physical communication

systems as ad hoc networks as far as power control is concerned.

Co-channel interference refers to interference from links operating at the same frequency. Due

to the scarcity of wireless spectrum, it is impossible that all links transmit at orthogonal frequency

bands. Since power control started from cellular networks and there are extensive studies in cellular

networks, let’s take cellular networks as an example. In cellular networks, all transmitters in a cell

may be designed to ensure orthogonal transmissions. That is, there is no intra-cell interference.

However, channel frequency is reused among all cells and the neighboring cells are assigned the

same frequency resources. This is indeed the case for CDMA and LTE networks, where any desired

downlink signal in a cell receives interference from other base stations and any desired uplink signal

receives interference from other cell phones in the neighboring cells as shown in Fig 1.5. If we

only consider download links or upload links, all links can form an ad hoc network. Different from

the general ad hoc network, the network nodes and links of this ad hoc network will change over

time due to the burst of users entering or leaving. Compared to cellular networks, most cyber-

physical communication systems have more limited frequency resources and all links interfere with

each other. Therefore, similar to cellular networks we can model all cyber-physical communication

systems as ad hoc networks.

The co-channel interference is the main limiting factor in general wireless systems. Commonly,

we call them as interference-limited systems when networks’ performance, especially capacity, is
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Figure 1.5: Co-channel interference.

limited by co-channel interference. That is because modern cellular networks’ performance, es-

pecially capacity, is limited by co-channel interference. The co-channel interference in the cyber-

physical communication systems may be more severe than cellular networks since few cyber-physical

communication systems have powerful base stations like cellular networks to assign all frequency

resources and temporal resources orthogonally. We investigate the possibility of power control in

cyber-physical communication systems for managing interference. We expect that power control

can bring a bunch of benefits in terms of link reliability, energy consumption, system throughput,

and end-to-end delay.

1.2.3 SINR model

Despite decades of research on interference-oriented channel access control, there are two widely

used models to characterize interference relationship in a wireless network, namely, the protocol

model [14] and the physical model. In the protocol model, a transmission from a node S to its

receiver R is regarded as not being interfered by a concurrent transmitter C if their geographical
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distance satisfies a certain relationship. The physical model, also known as the SINR model, is

based on practical transceiver measurement of communication systems that treat interference as

noise. Under the physical model, a transmission is successful if and only if signal-to-interference-

and-noise-ratio (SINR) at the intended receiver exceeds a threshold so that the transmitted signal

can be decoded with an acceptable bit error probability. The SINR can be written as

SINR =
S

I +N
(1.5)

where S is the received signal, I is total received interference, and N is the thermal noise.

In wireless communications, the SINR model is regarded as a high-fidelity interference model

in general. Such interference model is considered as a reference model since there exist practical

coding schemes to approach its solution in real systems.

However, the difficulty associated with the physical model is its computational complexity in

obtaining a solution, particularly when it involves cross-layer optimization in a multihop network

environment. This is because SINR calculation is a non-convex function with respect to the trans-

mission powers. As a result, a solution to cross-layer optimization using the physical model is

difficult to develop and its computational complexity is likely very high for large-sized networks.

Combining path loss, shadowing and multi-path fading, SINR model can be furthermore rep-

resented as in (1.6). Here, pi represents link transmission power; Gii represents path loss; lii

represents shadowing; hii represents multipath fading; βth represents SINR threshold.

piliihiiGii∑
j 6=i pjlijhijGij + ηi

≥ βth (1.6)

The SINR threshold βthdepends on the acceptable BER, detector structure, modulation/demodulation

scheme, and channel coding/decoding algorithm. On the other hand, the received SINR depends

on the channel attenuation, multiuser interference, antenna gain and transmission power. When

any one of the transmission rate, BER requirement, and packet size goes up, the SINR thresh-

old increases as well. The interference relations defined by the physical model are non-local and

combinatorial; that is because as shown in (1.6), whether one transmission interferes with another
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explicitly depends on all other transmissions in the network. That’s why addressing the reliability

issue in wireless cyber-physical systems would more challenging than expected. We will formulate

the SINR requirements of a set of links and demonstrate their relationship later.

1.3 Cross-layer Design for Communication Reliability

There has been a great amount of cross-layer design proposals for wireless networks. A number

of researchers have looked at specific aspects of network performance and cross-layer design as

mentioned in [15][16][17]. We focus on power control technique through this dissertation.

1.3.1 Power control in cellular networks

Power control provides an intelligent way of determining transmitting power to achieve the

quality of service (QoS) goals in wireless channels. Power control has been playing an important

role in cellular networks, ranging from 2G GSM and CDMA systems, to 3G networks based on

WCDMA or CDMA2000, and to 4G networks based on LTE or LTE-Advanced although there is

significant evolution from use experience to supporting techniques.

Power control was first used in the 1990s when GSM systems started to be commercially de-

veloped. In order to maintain fixed voice data rate, power control was introduced in GSM sys-

tems to compensate channel changes and support overall acceptable voice quality. Around that

time, power control was drawing broad attention in the research community. Of all algorithms,

Foschini−Miljanic algorithm [18] (usually denoted as DPC) is taken as a canonical power control

algorithm. This work first proposed a simple and autonomous method to track average channel

variation and regulate interference among users in different cells to meet certain required signal-

to-interference-plus-noise-ratios (SINRs). There are a great mount research for power control in

cellular networks at that time[19][20][21]. Thereafter, Power control became a mandatory compo-

nent in CDMA systems to address well-known near-far problem and ensure significant intra-cell

interference. In addition to voice, 3G and 4G systems support data of varying rates and aim to

extend system capacity. Rather than enabling power control to support fixed SINR, power control
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and rate control are jointly designed to maximize system capacity. In the CDMA2000 systems,

on the downlink, the transmit power is fixed and the uplink, however, is not scheduled and relies

on power control to achieve a required rate. As described in [22], two independent control mecha-

nisms together determine the power control scheme of CDMA2000 systems. The first component

is the basic power control scheme like CLPC, whose update rate is 600 Hz with step-size 1 dB.

The second control mechanism determines the data rate of transmission. All base stations measure

the interference level and set a control bit referred to as ”Reverse Activity Bit.” Each user adjusts

their transmission rate by these control bits. The RAB-bits are fed back at the rate of 37.5 Hz.

Similarly, LTE systems adjust coding and modulation schemes with the channel strength. In the

meantime, fractional power control [23] is adopted in the 4G LTE system to increase the overall

system throughput. It has been proved in [23] when each link only compensates a part of channel

attenuation, the overall system throughput can be maximized. A few performance comparison for

uplink power control in LTE can be found in [24].

Power control has been utilized to compensate channel attenuation and mitigate co-channel

interference. However, 3G and 4G systems aim to improve system capacity and support QoS while

GSM and IS-95 would like to maintain fixed SINR. Moreover, power control algorithms are strongly

dependent in system architecture and channel variation rates. There is a trade-off between Doppler

tolerance, robustness, and spectral efficiency. Distributed power control is of special interest.

1.3.2 The canonical power control

In early cellular systems, the centrally orchestrated control involves added infrastructure, la-

tency and network vulnerability. Successful distributed power control uses only local measurements.

J. Zander in [3] reported interesting initial work on distributed power control. Foschini and Miljanic

proposed a question:

”Given J deployed users and bases, is it possible to meet the p constraint even with a central

controller of power levels? When it is possible, can these same power levels be achieved with a

distributed algorithm? If so, how fast can such a distributed power control respond?”
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Foschini and Miljanic first proposed a simple and distributed transmission power of the signals

for the J users which are evolved to achieve the greatest signal-to-interference ratio are jointly

capable of achieving (the same ratio for all J users). The Foschini-Miljanic algorithm can be

formulated as follows:

P (k + 1) = R0P (k) + η (1.7)

where P is a vector of transmission power; R0 represents channel gain matrix and η represents a

vector of thermal noise for each link. This algorithm can be implemented locally as shown in (1.8).

p
(k+1)
i =

βth
βi
pki (1.8)

Each link’s current transmission power p
(k+1)
i is updated by its previous transmission power, target

SINR and current SINR. Since all of them can be measured locally, Foschini-Miljanic algorithm is

regarded as a simple and distributed power control algorithm. Assuming the instantaneous channel

gain is constant and there exists a fixed point, Foschini-Miljanic algorithm was proved to converge

to the fixed point.

The Foschini-Miljanic(FM) algorithm has been regarded as canonical power control algorithm.

Although Foschini-Miljanic algorithm builds on an assumption that there exists a fixed point, that

is the convergence value, the Foschini-Miljanic algorithm serves as a foundation of all distributed

power control algorithms. There are a great amount of variants by relaxing the assumption of

constant channel gain or have different settings. Generally, FM algorithm and its variants base

their power-control schemes on the observed signal-to-interference ratio (SIR) at the receiver or

the knowledge of the gains of all the links. Thus, the implicit assumption made is that the power-

control updates are made every time the fading state of the channel changes, i.e., whenever the

gain of any link.

1.3.3 Power control in dynamical networks

Traditional power control schemes whether centralized or distributed, assume quasi-stationary

of the fading wireless channels. However, a few scenarios have exhibited fast fading where the fades
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can change within milliseconds (at 900 MHz and mobile traveling at 60 mph). Channel inversion is

a method for addressing reliability in fast fading channel which sets transmission power inversely

proportional to channel gain. If the channel of link i can be represented by hiGii, transmission

power by channel inversion is

pi =
1

hiGii
(1.9)

Therefore, the received power equals to 1 for all links. The main purpose of this approach is to

completely compensate the channel attenuation. On the other hand, the transmission power by

fraction power control is

Pi =
1

(hiGii)α
(1.10)

where α is the fractional number between 0 and 1. Jindal et al. in [23] proved that if h meets

Rayleigh fading distribution and the network can be modeled as a Poisson network, any link can

obtain the maximum package delivery rate when α = 0.5. Fractional power control has been

adopted in LTE to improve system capacity. These approaches are common in quickly responding

to channel variations. They may be able to obtain long-term packet delivery rate. But obviously

there is not any proof that they can guarantee short-time or instantaneous packet delivery rate

since most of them only care about their own channel variation.

There is alternative power control scheme in which the transmission power does not need to be

updated whenever the channel meanders from one fading state to another. Instead, they explic-

itly take into account the statistical variation of the SINR of each transmitter/receiver pair and

optimally allocate power to minimize probability of fading-induced outage (which occurs when the

SINR falls below a threshold ). Given the required outage probability for each link, the problem

of power allocation that minimizes outage probability is shown to be a convex problem that can

be solved globally and efficiently, even when other constraints (such as on individual powers, total

power, etc.) are included in the power-allocation problem. However, it is still tough to obtain the

optimal transmission power in a distributed way.

Neely et al. in [25] considered dynamic routing and power allocation for a wireless network

with time varying channels. The network consists of power constrained nodes which transmit over
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wireless links with adaptive transmission rates. Packets randomly enter the system at each node

and wait in output queues to be transmitted through the network to their destinations. A joint

routing and power allocation policy is developed which stabilizes the system and provides bounded

average delay guarantees whenever the input rates are within this capacity region. Dulek et al. [26]

studied power control issue to minimize outage probability in Gaussian channels and proved that

the optimim transmission power strategy involves randomization.

1.3.4 Joint scheduling and power control

For wireless communication systems, one basic task of the link layer is to address channel

variation or channel fading [10]. In addition, an efficient media access control mechanism is required

to support as many concurrent links as possible since high system capacity is always desirable and

will finally affect the timeliness and decide if the system can work well in a dense network. Rate

control, scheduling, and power control are all link-layer mechanisms. Rate control is finally reflected

in coding and modulation schemes. Scheduling controls all links’ media access so as to control co-

channel interference. Power control is implemented to respond to channel variations by directly

adjusting transmission power. However, the optimum transmission power is not simply proportional

to individual link’s channel attenuation due to co-channel interference. When all links adjust

transmission power by their own channel attenuation, they cannot necessarily transmit successfully.

The optimum transmission power is a basis of all power control related topics. Feasibility is another

issue. That is, there may not be a transmission power assignment for ensuring the success of the

transmissions along all the links.

Although Foschini-Miljanic algorithm builds on an assumption that there exists a fixed point,

that is the convergence value, however, in a real network, there may not exist a feasible power control

for all links to satisfy the target SINR. The reliability issue can be modelled as joint scheduling

and power control. The problem of scheduling non-conflicting transmissions, in order to achieve

efficient spatial reuse, TDMA multi-hop packet radio networks has received considerable attention

in the literature [27]. In reality, the aggregate interference of a large number of far transmitters
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could be significant and may cause the SINR to fall below the threshold and, hence, disrupt an

ongoing communication.

Definition 1. In TDMA wireless ad hoc networks, a transmission scenario is valid iff it satisfies

the following three conditions.

1. A node is not allowed to transmit and receive simultaneously.

2. A node cannot receive from more than one neighbor at the same time.

3. A node receiving from a neighbor should be spatially separated from any other transmitter

by at least a distance .

The choice of the parameter affects the amount of interference eliminated via scheduling. If is

too small, no spatial separation between simultaneous transmissions is guaranteed and most of the

interference will be passed to the power control phase. On the other hand, if it is large, considerable

amounts of interference are eliminated via the scheduling phase. For example, to limit multiuser

interference to levels comparable to those in channelized cellular systems, the parameter should be

equal to the well-known “frequency reuse distance” parameter [37]. The choice of the parameter

generally depends on the minimum acceptable SINR levels.

This problem above is a mixed integer linear programming (MILP) problem, which is known

to be NP-hard. Any NP-hard problems cannot find the solution in a reasonable computation time.

Thus most real-world joint scheduling and power control algorithms are approximation methods.

One type of heuristic methods uses the approach of adding links one by one and testing its feasibility.

These heuristic methods may be helpful for a centralized system, but it is difficult to implement

them in a distributed way.

The joint scheduling and power control approach introduces a cross-layer design framework

to the multiple access problem in contention-based wireless ad hoc networks. The power control

(physical layer problem) and time-division multiple-access (TDMA) scheduling (multiple access

problem) have been largely studied in isolation, namely. The studies have proposed to solve the

multiple access problem via two alternating phases that search for an admissible set of users along
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with their transmission powers. In the first phase, the scheduling algorithm is responsible for

coordinating independent users’ transmissions to eliminate strong levels of interference inherent to

wireless ad hoc networks. In the second phase, power control is executed in a distributed fashion,

to determine the ”admissible” set of powers that could be used by the scheduled nodes, if one

exists. If no set of positive powers can be found, control is transferred again to the scheduling

phase to reduce interference via deferring the transmissions of one or more users participating in

this scenario. Detailed challenges can be found in [28].

1.4 Dissertation Contribution

This dissertation discusses several issues regarding power control for guaranteeing predictable

communication reliability in wireless cyber-physical systems. The contribution of this dissertation

can be summarized as follows:

• Chapter 3 has conducted a systematic investigation of power control approaches. It analyzes

the theoretical results of power control in a deterministic channel. The normalized interference

is directly related to the Perron root and feasibility; when the interference is bounded, the

Perron root will be bounded. By this observation, adopting the PRK model and NAMA

scheduling as the foundation of the framework, a distributed framework was proposed to do

joint scheduling and power control in a distributed way to guarantee communication reliability.

The proposed framework is expected to serve as a foundation for distributed scheduling and

power control.

• Chapter 4 has aimed to leverage scheduling and power control to support reliable IoT appli-

cations. Specifically, it focused on ensuring high concurrency while guaranteeing application-

required communication reliability. It adopted the framework proposed in Chapter 3 and

employed power control algorithm to update transmission power per SINR feedback. The

algorithm improves concurrency by 70% than state-of-art fixed scheduling while ensuring

successful SINR tracking over time. This approach is the first distributed scheduling and
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power control scheme that ensures predictable wireless communication reliability while con-

sidering real-world challenges such as fast channel fading, and it is expected to serve as a

foundation for real-world deployment of mission-critical IoT systems.

• Chapter 5 has investigated power control approach in addressing large-scale channel dynamics

in wireless networks. An analysis of joint scheduling and power control in guaranteeing pre-

dictable per-packet communication reliability was presented. The analysis has showed that

scheduling is a must and power control can help improve concurrency. A few insights come

out for conducting protocol design. Silencing closing-by links will help regulate co-channel

interference to ensure SINR feasibility and high transmission concurrency. The Canonical

Foschini-Miljanic power control algorithm can help improve transmission concurrency when

applied together with scheduling. The numerical results also demonstrated, when using the

Foschini-Miljanic power control algorithm, how transmission power changes over time in the

case of SINR feasibility and infeasibility respectively. The evaluation results have demon-

strated the benefits of joint scheduling and power control even in a real distributed imple-

mentation. The results have also demonstrated the challenges in guaranteeing per-packet

communication reliability and SINR, for instance, with the randomness in NAMA scheduling

introducing non-negligible variations in SINR, and they have suggested future directions of

research.

1.5 Dissertation Organization

This dissertation is organized as follows. First, literature review is given in Chapter 2. Then,

a general distributed framework is proposed in Chapter 3 and a distributed scheduling and power

control for IoT communication reliability is studied in Chapter 4. Chapter 5 introduces analysis of

joint scheduling and power control for predictable URLLC in industrial wireless networks. Chapter

6 concludes this dissertation and presents future research.
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CHAPTER 2. LITERATURE REVIEW

2.1 A Simple Power Control Algorithm

Jens Zander [29] first analyzed and derived the upper performance bounds for transmitter

power scheme in cellular radio system to reduce co-channel interference. Foschini and Miljanic [18]

proposed a simple effective means of power control of signals associated with randomly dispersed

users in cellular networks. By regulating inter-cell interference and effecting the lowest interference

environment, in meeting a required minimum signal-to-interference ratio per user, channel reuse is

maximized. The proposed approach can be implemented in a distributed way with only local SINR

measurement required and converge to a fixed point, which is the optimal point on minimizing This

creative work has been extensively studied and placed a foundation for power control. Huang et

al. [30] proposed a discrete version where each link updates their transmission by a fixed step and

discussed its application in admission control. When the convergence property of distributed power

control is very important, Leung et al. [31] proposed a general class of power control algorithms

and proposed the conditions of its convergence. They claimed that any functions that satisfy

these conditions can converge. Compared with the convergence property, it is equally important

that a power control algorithm can converge quickly to a fixed point or quickly detect the case

of infeasibility. Huang and Yates [30] showed that Foschini−Miljanic algorithm converges to an

unique fixed point at a geometric rate. If the system can support all users at the target CIR,

iterative power control guarantees convergence to a fixed point at a geometric rate for both fixed

base station assignment and minimum power assignment. In the presence of maximum power

constraints, geometric convergence to a unique fixed point always occurs. Other than power control

alone, there are lots of variants regarding to combine Beamforming and BS assignment [32]. The

readers can see more algorithms in [33][34]. Feyzmahdavian et al. [35] introduced counteractive
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interference functions to analyze a class of power control algorithms that can guarantee the existence

and uniqueness of fixed points along with linear convergence of iterates.

2.2 Power Control in Wireless Sensor Networks

The study of power control in wireless ad hoc networks started in the early 2000s. Gupta et

al. [36] have discussed the system capacity limitation due to co-channel interference and proved

that when n identical randomly located nodes, each capable of transmitting at W bits per sec-

ond, forms a wireless network, the throughput is only Θ( W√
n

) for each node, even in the optimal

circumstances. This finding shows that when the number of concurrent nodes in a unit area in-

creases, the throughput for each node can approach 0. This work has indicated that it is crucial

to mitigate co-channel interference by optimally utilizing power control and scheduling in wireless

sensor networks. Elbatt and Ephremides [37] in 2004 introduced power control as a solution to the

multiple access problem in contention-based wireless ad hoc networks. The authors showed that

the classical Foschini−Miljanic algorithm [18] in cellular networks is directly applicable to wireless

ad hoc networks. Other than this, the general framework of joint scheduling and power control was

first proposed. Kawadia et al. [38] distilled some basic principles on power control. Wan et al. [39]

further mathematically formulated the scheduling issue as selecting a maximum set of independent

links given a set of links. The authors proved that the cumulative interference beyond a certain

distance can be upper bounded. That is, we can guarantee link reliability by removing all links

within a distance from the receiver. Leveraging this finding, heuristic methods are mostly used in

finding the maximum independent set. These algorithms go through links in a certain order, and

all the links are added to form an independent set as in [40] and [39].

Ikram et al. [41] presented a tramsmission power control algorithm to address industrial is-

sues concerning energy consumption. The proposed algorithm assumed a linear approximation

between the transmission power and RSSI. When the received RSSI falls beyond estimated value,

transmission power control will be triggered.
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2.3 Optimization of Joint Scheduling and Power Control

Elbatt and Ephremides [37] first introduced joint scheduling and power control framework in

wireless ad hoc networks and formulated this issue as a Mixed Integer Linear Programming (MILP)

[42] optimization problem. Due to its NP-hardness, approximation algorithms naturally arise.

This model disclosed the optimization challenge of joint scheduling and power control. Leveraging

the finding that the cumulative interference can be bounded, graph theory is used for solving

scheduling and power control and a conflict graph is built to obtain the maximum independent

set and any independent set. In the conflict graph, all links are the vertices of the graph. A

link can connect to another link if they are far away or satisfy a certain relationship. Magnús M.

Halldórsson conducted extensive research on joint scheduling and power control [43]. Those work

mainly focuses on obtaining asymptotic characterization of joint scheduling and power control. In

[43], Magnús M. Halldórsson divided all links into subsets with equal link length. Each subset is

then scheduled separately through graph coloring. Halldórsson and Tonoyan [44] presented the first-

approximation algorithm, which is claimed as the best among oblivious power schemes. Although

all these approximation algorithms have an good asymptotic bound, their practical concurrency

is very low. Meanwhile, they assumed obvious transmission power algorithms [44][45], such as

constant power, power inversion, and those algorithms are rarely implemented in a distributed

way.

2.4 Address Channel Dynamics using Power Control

Lin et al. [46] has evidenced in their field tests that channel attenuation changes over time

and adaptive transmission power control is required to obtain reliable packet delivery over time.

They conducted extensive empirical studies and confirmed that the quality of radio communication

between low power sensor devices varies significantly with time and environment. This phenomenon

indicates that previous topology control solutions, which use static transmission power, transmission

range, and link quality, might not be effective in the physical world. This paper presents ATPC, a

lightweight algorithm of Adaptive Transmission Power Control for wireless sensor networks. With
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this model, they employed a feedback-based transmission power control algorithm to dynamically

maintain individual link quality over time, and their in-situ experiments revealed the correlation

between RSSI/LQI and link quality. They set up a model to predict the proper transmission

power, which is enough to guarantee a good packet reception ratio. However, their experiments

were designed without congestion and collision.

Kandukuri and Boyd [47] proposed a new method of power control for interference limited

wireless networks with Rayleigh fading of both the desired and interference signals. Their method

explicitly took into account the statistical variation of both the received signal and interference

power, and optimally allocates power subject to constraints on the probability of fading induced

outage for each transmitter/receiver pair. They built several results including the equation between

optimal transmission power and desirable packet delivery ratio.

Holliday et al. [48] attempted to address channel dynamic issue but only obtained average SINR

and concluded that FM algorithm may bring SINR overshoot issue. Previous work in this area has

focused on distributed control for ad-hoc networks with fixed channels and the algorithms resulting

from such formulations do not accurately capture the dynamics of a time-varying channel. They

revealed that he performance of the network in terms of power consumption and generated interfer-

ence, can be severely degraded when power and admission control algorithms that are designed for

deterministic channels are applied to random channels. In order to address these problems, they

presented new distributed power and admission control algorithms for ad-hoc wireless networks

in random channel environments and a new criterion for optimal transmission power in ad-hoc

wireless networks was proposed. A modified version of this algorithm for tracking non-stationary

equilibrium was presented, which allows to perform admission control. Ultimately, the iterations of

the stochastic approximation algorithms can be decoupled to form fully distributed online power

and admission control algorithms for ad-hoc wireless networks with time-varying channels.



www.manaraa.com

22

2.5 Power Control for System Performance Improvement

Chiang et al. [49] extended Kandukuri and Boyd’s work and applied the method into joint

power control and rate control in random wireless networks. Of all applications, one is to maximize

the overall system throughput while meeting each user’s minimum transmission rate constraint and

outage probability constraint. The authors concluded that at the high SINR regimes the issue can

be solved by geometric programming (GP) [50] and efficiently solvable for global optimality. The

variants of the problem, e.g. a total power consumption constraint or objective function, can be also

solved by GP. In the median or low SINR area, the issue is intractable since the Shannon equation

cannot be approximated as a linear function between transmission power and transmission rate.

However, the successive convex approximation method, which converges to a point satisfying the

Kaurush−Kuhn−Tucker (KKT) conditions, can be a good approach as in [49].

Cruz and Santhanam [27] studied joint power control, rate control, and scheduling to minimize

total average transmission power with the minimum average data rate constraints per link in a long

term. Cruz and Santhanam formulated the issue as a duality problem via the Langrage Multiplier

method and decomposed the whole issue into a single-slot optimization issue. Cruz and Santhanam

concluded that for the optimal policy each node is either not transmitting at all or transmitting at

the maximum possible peak power. As for scheduling, the authors recommended a pseudo-random

number generator to select which link is activated. The author also mentioned hierarchical link

scheduling and power control, where all links are partitioned into clusters. Links in one cluster

are scheduled somewhat independently of links in other clusters. Each cluster is constrained to

accommodate a limited number of links. The inter-cluster interference is modeled as static ambient

noise. If the desired data rates on links are sufficiently low, the optimal policy activated a large

number of clusters. All analyses and conclusions are based on the assumption that the achieved data

rate is a linear function of SIR. In fact, this assumption hints that the SIR is high; otherwise, it is

unreasonable. Rashtchi et al. [51] studied the same issue to determine the data routes, subchannel

schedules, and power allocations that maximize a weighted-sum rate of the data.
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Dams et. al in [52] studied the convergence of distributed protocols for power control in a

non-cooperative wireless transmission scenario. They proposed a framework that uses learning al-

gorithms and iterative discrimination for power control and showed roughly a polynomial number

rounds for all links to converge to target SINR. Lee et al. [53] considered a hybrid networks in cel-

lular setting with D2D communication to maximize the sum rate of D2D links using power control.

Wang et al. [54] considered the dynamic power control for delay-aware D2D communications.

2.6 Conclusion

In this chapter, related works in the area of power control are presented. Theoretical modelling

and approximate approaches of joint scheduling and power control have been well studied. However,

distributed approaches have been rarely proposed and are field-deployable in large wireless networks.

Accordingly, this dissertation focuses on investigating distributed field-deploy-able power control

approaches.



www.manaraa.com

24

CHAPTER 3. A PHYSICAL-RATIO-K MODEL-BASED POWER

CONTROL FRAMEWORK

In this chapter, we investigate power control technique for improving reliability in cyber-physical

systems. We model wireless networks in cyber-physical systems as ad-hoc networks and narrow

down the reliability issue into addressing co-channel interface and channel dynamics. We propose

a distributed power control framework for guaranteeing wireless channel reliability.

3.1 Introduction

We started our study from cellular networks. However, we quickly found that wireless cyber-

physical systems are different from cellular networks in a few respects. First, there is an obvious

difference in network architecture. For instance, wireless sensor networks’ architecture tends to be

ad-hoc or hierarchical, where the whole network is divided into multiple levels and all nodes in lower

levels converge to higher levels and ultimately to a sink. Without support of central controllers,

such as base stations in cellular networks, the distributed protocol design is challenging. Secondly,

wireless networks in cyber-physical systems may face much harsher network and environmental

uncertainties as compared with traditional cellular networks. Thirdly, different from wireless cellu-

lar networks, where system throughput is the main performance metric, packet delivery reliability

in cyber-physical networks tends to be more critical. At the early development stage of wireless

networks in cyber-physical systems, reliable packet delivery may be able to be guaranteed due

to the fact that the traffic load is low and co-channel interference can be controlled by limiting

concurrent users. As wireless ad hoc networks develop with dense users, however, the co-channel

interference will dominantly affect the packet delivery reliability. In recent years, the emergence of

vehicular networks has brought up this issue even more urgent [18] when the main application of

vehicular networks is to support vehicle active safety, and the broadcast of safety messages makes
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the traffic load high. For most wireless networks, there is a trade-off between reliability, delay, and

throughput. Reliability guarantee of high-load traffic is challenging, especially when the channel

is dynamic. We seek fundamental power control framework to address reliability issue along with

channel dynamics.

For wireless communication systems, one basic task of the link layer is to address channel

variation or channel fading [10]. In addition, an efficient media access control mechanism is required

to support as many concurrent links as possible since high system capacity is always desirable and

will finally affect the timeliness and decide if the system can work well in a dense network. Rate

control, scheduling, and power control are all link-layer mechanisms. Rate control is finally reflected

in coding and modulation schemes. Scheduling controls all links’ media access so as to control the

co-channel interference. Power control is implemented to respond to channel variations by directly

adjusting transmission power. However, the optimum transmission power is not simply proportional

to individual link’s channel attenuation due to the co-channel interference. When all links adjust

transmission power by their own channel attenuation, they cannot necessarily transmit successfully.

The optimum transmission power is a basis of all power control related topics. Feasibility is another

issue. That is, there may not be a transmission power assignment for ensuring the success of the

transmissions along all links. In cyber-physical communication systems, power control schemes

tend to be implemented in a distributed way. Thus the timescale of channel variations becomes

a critical factor in power control design. Theoretically, distributed power control should converge

much faster than the speed of channel variations. Otherwise, failure in tracking instantaneous

channel change would result in channel outage [55].

In this chapter, we will focus on power control theory as well as representative methods. We

will analyze the basic mathematical theory behind power control schemes to investigate how power

control can affect and support cyber-physical communication systems. A general distributed frame-

work is proposed in this chapter.
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Figure 3.1: The ad hoc network architecture of wireless cyber-physical system

3.2 System Model

We model the wireless network in cyber-physical systems or a partial layer as ad hoc networks

if only co-channel interference is considered. It is quite reasonable to model all cyber-physical

communication systems as ad hoc networks as far as power control is concidered. We model an

ad hoc network and show the co-channel interference characteristic among links in Fig. 3.1. As

showed in in Fig. 3.1, for example, link i will receive interference from all links, but for simplicity

we only show partial interfering links from the nearby links such as link 3, 5, and 7.

Subject to shadowing and multipath fading, wireless channels change over time. However,

wireless channels in static networks are usually modeled as constant channels for the purpose of

analysis; it is also reasonable since the coherence time has a relatively larger scale compared to com-

munication time. Given a large network with the fixed channel gain, the problem of power control

becomes finding the maximum feasible set of links and their corresponding optimal transmission

power. Such an issue can be modeled as joint scheduling and power control, and it is theoretically
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NP-hard. If fading is considered, the SINR model will be a bit different. Due to the fact that

shadowing changes slowly, most mathematical models don′t consider shadowing. The receiver-side

SINR at a link i (i = 1, 2, 3...n) can be represented as (3.1):

SINRi =
pihiigii∑

j 6=i pjhijgij + ni
, i = 1, 2, 3...N (3.1)

where gij > 0 is the power gain from the transmitter of the jth link to the receiver of the ith link,

pi is the power of the ith transmitter, and ni is the thermal noise power at the ith receiver.

For the random channel, it is impossible to guarantee 100% packet delivery. We use packet

delivery rate or outage probability to measure link reliability. Outage probability is an important

metric to measure communication reliability in wireless networks. The formal definition of outage

probability is as follows

Oi = Pr(βi < βth) (3.2)

Furthermore, we can rewrite the outage probability as

Oi = Pr(piihiGii < βth
∑
j 6=i

pijhijGij) (3.3)

The general purpose is to find transmission power to have outage probability guaranteed for each

link. Through this dissertation, we aim to address this issue with predictable per-packet reliability.

3.3 Key Theoretical Results

3.3.1 Feasible and optimal power control

Let’s consider constant channel first. Given a set of transmitter-receiver pairs, we would like to

find a transmission power for each link to satisfy their SINR requirements. According to the SINR

model, a link would transmit a packet successfully if and only if

piGii∑
j 6=i pjGij + ηi

≥ βth (3.4)

where pi is link i′s transmission power; Gii is link i′s channel gain; Gij is the channel gain from link

j′s sender to link i′s receiver; ni is link i′s receiver-side thermal noise; βth is link i′s target SINR.
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We assume all links have the same target SINR. As shown in (3.4), individual link’s SINR depends

on other links’ transmission power. To obtain a transmission power for each link, we can transform

the SINR model in (3.4) into a matrix form and we have the transformed form

P ≥ FP + η (3.5)

and

Fij =


βiGij/Gii, if i 6= j

0, if i = j

(3.6)

and

ηi = βini/Gii (3.7)

where P is a vector of each link’s transmission power, and ni is link i’s thermal noise. Each entry of F

represents the normalized interference multiplied by the SINR target. The normalized interference

is obtained by dividing each link’s interference by its channel gain. The inequality (3.5) meets the

form of Linear Programming. Therefore, we can utilize the theory of Linear Programming to get

the solution of all transmission powers. According to Linear Programming, if there exist solutions

for the inequality (3.5), all solutions form a cone and the vertex of the cone is the point that lets

the equation condition hold. All those solutions are called feasible solutions and the vertex of the

cone is usually called fixed point [56] by optimization convention. By solving the linear equation,

we have the fixed point

P ∗ = (I − F )−1η (3.8)

P ∗ is the minimum value among all solutions, so it is the optimal solution in the perspective

of power consumption. This characteristic is usually utilized to calculate the minimum power

consumption in a given network.

It is theoretically easy to obtain the feasible and optimal transmission power for all links.

However, it is challenging to obtain the fixed point in a distributed way. Foschini and Miljanic [18]

first proposed the simple and autonomous algorithm to obtain the fixed point. The algorithm is as
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(3.9)

P it+1 = βiP
i
t /r

i
t (3.9)

where P it+1 is the transmission power of link i at time t + 1; P it is the transmission power of link

i at time t; βi is the SINR threshold of link i; rit is the actual received SINR at time t for link i.

Because each link updates its current transmission power only by its previous SINR, this method

can be easily implemented. Foschini and Miljanic in [18] proved this algorithm can synchronously

converge to the fixed point. Most of the following distributed power control algorithms are based

on this algorithm.

3.3.2 In-feasibility of power control

In contrast, the Linear Programming constraint in (3.5) may have no solutions. That is, we

cannot find a transmission power for each link to ensure they transmit concurrently. We can

introduce the Perron−Frobenius Theory [57] to explain the feasibility of the Linear Programming

problems.

Theorem 1. [57] if A is a square non-negative matrix, there exists an eigenvalue λ such that

• λ is real and non-negative;

• λ is larger or equal to any eigenvalue of A;

• there exists an eigenvector x > 0 such that Ax = λx.

Here, λ is the largest eigenvalue of A. We take it as the spectral radius of A and we also call it

the Perron root of A. Applying the Perron−Frobenius theory with the SINR model, we can find if

λ(F ) < 1 when η 6= 0 or λ(F ) ≤ 1 when η = 0, there exists feasible power assignments. The proof

can be found in [57].

Lemma 2. (Feasibility condition [57]) A set of links is feasible if and only if λ(F ) ≤ 1 when η = 0

and λ(F ) < 1 when η 6= 0.

Lemma 3. (Optimum power [57]) If a set of links is feasible, the optimum power is P ∗ = (F−I)−1η.
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Once a set of links is infeasible, we need to introduce scheduling to remove a subset of links to

ensure remaining links are feasible. Joint scheduling and power control is an important topic in

wireless systems since a real system almost needs scheduling to remove strong interference. The

objective of joint scheduling and power control is to find a set of active links and their feasible

transmission power.

The theory above indicates feasibility and optimality of power control in large networks assuming

the channel is constant. Actually this theory can be extended into dynamical networks as well. We

will discuss later.

3.4 Representative Power Control Schemes

Power control schemes can be significantly different in the situation with the consideration of

multipath fading or not. Generally assuming static networks have constant channel and mobile

networks such as vehicular networks have fading channels, we discuss power control approaches for

constant channels and fading channels.

3.4.1 Conflict graph-based power control for constant channels

In ad hoc networks, it is necessary to suppress transmissions by nodes around the desired

receiver in order to achieve successful communication. Hasan and Andrews in [58] first proposed

the concept of guard zone. They showed that the size of this exclusion zone has a large impact

on the transmission capacity of ad hoc networks, and an optimal guard zone can be found using

stochastic geometry. These results provide useful insight in the design of contention resolution

algorithms as compared to pure random access in ad hoc networks.

In the real implementation, given a large network with fixed channel gain, power control mainly

cares about finding the maximum feasible set and their corresponding optimal transmission power.

Just as we discussed in the previous section, such an issue is modeled as joint scheduling and

power control, and it is theoretically NP-hard. Therefore, all power control approaches in constant

channels are approximate methods. Most approximate algorithms utilize the fact that the total
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Figure 3.2: Link conflict graph [1].

interference from links beyond a certain distance can be upper bounded [43]. Once the interference

is upper bounded, the SINR can be guaranteed and all packets can be delivered successfully.

Given a set of links, if we use a simple path loss model, we can calculate the accumulated

interference as [43]

I =
∑
dij>ρ

c/dαij (3.10)

where c is a constant related to path loss and transmission power, dij is the distance from link

j’s sender to link i’s receiver, and α is the path loss index. Assuming all nodes are uniformly

distributed in a given area, we can obtain an upper bound of the accumulated interference from

nodes within distance ρ away. Furthermore, we can calculate exact ρ in (3.10) by ensuring any

specific SINR requirement. Given a link, the value of ρ means all links within the distance ρ

interfere with the given link. Therefore, each link has a corresponding distance beyond which other

links can transmit simultaneously, and all links within which should be disabled as conflict links.

We can build a conflict graph to represent the conflict relationship between any two links and then

utilize this conflict graph to obtain a maximal independent set.

In a conflict graph, a circle represents a link, and all links are vertices of the graph. If two links

can transmit at the same time, they are not connected in the conflict graph; otherwise, they are

connected. In Figure 3.2, link 5 is in conflict with the link 1, 2, 6 and 7. When link 5 is transmitting

a packet, Link 1, 2, 6, and 7 cannot transmit at the same time with link 5.
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There is a disadvantage for the conflict graph-based approach as discussed in [59]. When we

build the conflict graph, we mean that a link is conflicting with all links within the distance ρ. This

implicitly indicates that the conflict links cannot transmit concurrently because all links beyond

the distance ρ are interfering. But the fact is that there is very small probability that all those

links have traffic requirements at the same time in a real-world system and thus the accumulated

interference is far less than the upper bounded interference. In this case, two conflict links may be

allowed to transmit concurrently. The direct result is a big sacrifice in concurrency.

For static networks with constant channels, scheduling and power control is used as a means to

guarantee reliability. The performance of conflict graph-based approaches depends on the accuracy

of conflict links. A large guard area can bring significant degradation in concurrency while a small

guard area may be unable to guarantee reliability. Whatever, all existing algorithms are time

consuming. There are few applications of these algorithms in real wireless communication systems.

3.4.2 Geometric programming-based power control for fading channels

For a real-world system, we cannot ignore fading, especially when the system is mobile. Fading

is the most important factor that affects the instantaneous packet delivery rate (PDR). If fading

is considered, the SINR model will be a bit different. It is impossible to guarantee 100% packet

delivery. We use packet delivery rate or outage probability to measure link reliability. For Rayleigh

fading, its distribution is an exponential function as we discussed in the previous section and is easy

to be analyzed. Most analytical models assume that channel fading follows the Rayleigh fading

model. We can obtain a closed form of outage probability [47]

Oi = 1−
∏
j 6=i

1

1 +
βiGijPj
GiiPi

(3.11)

where Oi is the outage probability and Pi is the transmission power. More details about

geometric programming can be found in [50]. We note that the term βiGij/Gii is exactly the entry

of channel gain matrix F. This indicates that the outage probability is always related to static or

average channel characteristics. Furthermore, we define the minimum outage probability as
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O∗ = min
P

max
i
Oi, Pi > 0. (3.12)

P is a vector of Pi, and O∗ is the minimal value of the maximum outage probability among all

links. Syod et al. in [50] has proved the relationship between O∗ and channel gain matrix F . We

have

λ

1 + λ
≤ O∗ ≤ 1− exp−λ (3.13)

where λ is the Perron root of the constant gain matrix. There is a very interesting quantitative

result here. If target SINR is fixed and λ approaches 1, the maximum outage probability can be

larger than 50% if we we assume Gii is constant. The physical meaning is that if we don’t respond to

fading and use fixed transmission power during the process of fading, in the worst case, some feasible

links can obtain at most 50% package delivery rate. Obviously, this result is unacceptable. This is

the disadvantage of power control with fixed transmission power in a fading network. Therefore,

this model is usually combined with rate control. Only by adjusting transmission rate, that is,

SINR threshold, can the packet delivery rate be guaranteed. The mathematical model can be

Maximize Ri (3.14)

Subject to

Oi ≥ Oi,min (3.15)

Ri ≥ Ri,min (3.16)

where Oi,min is the minimum outage requirement and Ri,min is the minimum transmission rate

requirement. We have Ri = log(1 + βi) by the well-known Shannon theory [60]. This issue is

difficult to solve due to the nonlinear relationship between SINR threshold and transmission rate.

If βi is much larger than 1, however, we can get Ri = logβi. We can use geometric programming

to solve it. Due to the limitation of space, we will not introduce geometric programming. But we

would like to mention that almost all joint power control and rate control issues are based on this

geometric programming model. This model is complex and non-convex especially in the low SINR
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region. The current effort in the research community is mainly focusing on efficiently converting a

non-convex issue into a convex issue.

3.5 The Adoption of Physical-Ratio-K Model

In general, the conflict graph-based power control approach works for static networks with

constant channels, and the geometric programming-based power control approach is applicable for

mobile networks with fading channels. These two approaches assume that large-scale channel gain

is constant over a long time. There are obvious drawbacks for the two approaches: time consuming

and low concurrency. Thus we suggest adaptive power control in cyber-physical communication

systems should move toward adaptive power control approaches. In this section, we will discuss

the possibility of adaptive power control. Neither of approaches above is a good foundation for

distributed interference control in the presence of uncertainties[61][62][63].

Zhang et al. [61] proposed the PRK interference model and the corresponding adaptive schedul-

ing algorithms [64]. The PRK model leverages some inherent characteristics of wireless networks

like bounded interference and removes some unreasonable assumptions such as constant channel

over time. Although power control has not been completely implemented in the PRK model,

Zhang et al.’s method presents the potential application of power control in the real communi-

cation systems. The PRK model defined a loose conflict graph. Different from conflict graph in

static networks, where conflict graph is based on a simple path loss model and is related to the

transmitter-receiver pair’ s position, this graph does not assume the simple path loss model and the

PRK model defined a loose conflict graph based on the ratio K of the link’ instantaneous received

signal to the instantaneous interference signal.

In the PRK model, a node C ′ is regarded as not interfering and thus can transmit concurrently

with the transmission from another node S to its receiver R if and only if the following holds

P (C ′, R) <
P (S,R)

KS,R,Ts,R
(3.17)

where P (C ′, R) and P (S,R) is the average strength of signals reaching R from C ′ and S, re-

spectively, and K is the minimum real number chosen such that, in the presence of cumulative
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Figure 3.3: The physical-ratio-K (PRK) interference model

interference from all concurrent transmitters, the probability for R to successfully receive pack-

ets is satisfied. Therefore, K defined the conflict graph between any links. However, PRK-based

scheduling can achieve only average or long-term packet delivery rate.

The physical-ratio-K(PRK) model [61] is an interference model that defines the conflict rela-

tionship between two links. In other words, this model determines whether two links can transmit

at the same time or not. According to the PRK model, a link j conflicts with a link i if

Gij ≥
Gii
Kii

(3.18)

We find that the parameter Kii of the PRK model is directly related to the feasibility of gain

matrix F . For each link, a given Kii would divide all links into conflicting links and concurrent

non-interfering links. If Kii is too large, most links will be regarded as conflicting links and sacrifice

concurrency; if Kii is too small, the concurrent links are not necessarily non-interfering. Thus

finding the exact Kii is very important.

3.6 Proposed Joint Scheduling and Power Control Framework

In this section, we present a distributed framework to obtain near-optimal scheduling and power

control.



www.manaraa.com

36

3.6.1 Observations on Perron Root

It is well known that for a nonnegative matrix A, the smallest row sum of A and the largest row

sum of A provide lower and upper bounds, respectively, for the Perron root of A[11]. Furthermore,

the increase for any element of A will increase the Perron Root of A [12]. If the distance-based

path loss law is adopted, the large element of F corresponds to the link with short interfering link

length, which means the close-by links have the most important impact on concurrent transmission.

In order to guarantee reliable transmission, the close-by links should not be scheduled at the same

time.

According to the perron root theory, we can obtain a few observations.

Corollary 4. If all row sums of a gain matrix is less than 1, the set of links are feasible.

Corollary 5. If all row sums of a gain matrix is larger than 1, the set of links are infeasible.

Corollary 6. If a gain matrix has minimal and maximal row sum, respectively smin and smax,

smin <= λ <= smax

Each entry in the gain matrix means the interference. The row sum is the aggregated interfer-

ence. Thus if the aggregate interference is bounded, then Perror root is bounded.

Once we find the feasible K for each link and build a conflict relationship, we can use NAMA

scheduling [65] to select concurrent links. NAMA scheduling is a distributed approach to channel

access scheduling for wireless ad hoc networks. Based on known conflict relationships, each link

calculated a priority for itself and all its conflict links. A link would get access to the channel if it

has the highest priority among all its conflicting links.

Therefore, back to feasibility condition and PRK model, to ensure reliability becomes finding

the feasible K and optimal transmission power for each link. Under channel dynamics, feasibility

condition would change and scheduling K (i.e., the parameter K of the PRK model) may change

as well. The next section will present how the system converges to an near-optimal K and feasible

transmission power over channel variations.



www.manaraa.com

37

3.6.2 The Framework

This framework consists of the channel measurement module, NAMA scheduling module, SINR

measurement module, and PRK adaptation and transmission power update module. For slowly

time-varying IoT systems, the channel measurement module will measure average channel at setup

stage and update it at a long timescale. All packets are sent in the data channel. At each time

slot, each sender will run NAMA scheduling to determine if it can obtain channel access or not.

When a sender gets the channel access, it will send a packet, and its receiver will then measure

current SINR and send it back to the sender via acknowledgement packet. So the whole system

requires ACK feedback. When the sender receives current SINR, it will calculate the scheduling

K and transmission power for the next time slot according to current K, transmission power and

SINR. This distributed framework will run as shown in Algorithm 1.

Input: P 1
i , K1

i , βth
Output: pti, x

t
i

Ḡi,j = MeasureAverageChannel();

for t← 1 to T do

xti = NAMAScheduling(kti , Ḡi,j);

βti = MeasureSINR(pti, x
t
i);

(pt+1
i , kt+1

i ) = UpdateSchedulingKandPower(pti, k
t
i , β

t
i , βth);

end
Algorithm 1: A framework of distributed scheduling K and power control

This is an adaptive power control framework that builds iterative scheduling and power control

update, which has the flexibility to respond channel dynamics. Depending on scale of channel

dynamics, the algorithm of transmission power and scheduling can be finely adjusted.

3.7 Conclusion

In this chapter, we analyzed the theoretical results of power control in deterministic channel. We

observed that the normalized interference is directly related to the Perron root and feasibility. Once

the interference is bounded, the Perron root will be bounded. By this observation, we adopted the

PRK model and NAMA scheduling as the foundation of the framework. We defined the optimum K
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and proposed a distributed framework to update scheduling and K. In this framework, scheduling

and power control will alternatively run. We prove the feasibility of our framework by analytical

approach. This adaptive power control framework will be a foundation for distributed power control

and scheduling algorithms.
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CHAPTER 4. DISTRIBUTED SCHEDULING AND POWER CONTROL

FOR IOT RELIABILITY

In this chapter, we further investigate the optimization issue of joint scheduling and power

control and focus on adaptive power control algorithm to guarantee SINR for small-scale channel

variation. We present a distributed power control and scheduling algorithm and demonstrate the

significant improvement in concurrency while guaranteeing reliability.

4.1 Introduction

Wireless networks are stepping into a new era from human-oriented cellular networks to ubiq-

uitous IoT. The emergence of IoT is changing our vision for future wireless networks. Wireless

network standards such as ISA100.11a and WirelessHART [66] have facilitated applications of IoT

in industrial automation, home intelligence, and health care [67][68][69]. While those standards try

to improve wireless communication reliability through mechanisms such as graph routing [70] and

packet retransmission, their sacrifice in channel spatial reuse and system capacity have impeded

at-scale deployments of IoT. In the meanwhile, Petersen and Aakwag [71] have verified that wireless

instrumentation for safety-critical applications in oil and gas industry are still confronted with a

serials of issues such as weak RF signals, interference, and multi-path fading [10]. Furthermore,

wireless networks in the current IoT practice under star and mesh topology will inevitably suffer

from increased co-channel interference from close-by links as network traffic increases and as net-

work scales up. These issues call for new network designs to enhance the reliability and capacity

of wireless networks for mission-critical applications.

Uncertainties of wireless networks mainly come from co-channel interference and channel dy-

namics (e.g., due to shadowing and multi-path fading). It is undoubted that redundant designs

such as graph routing and packet re-transmission can improve network reliability to some ex-
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tent, but they cannot eliminate packet loss from wireless network uncertainties. While cellular

networks mitigate co-channel interference through mechanisms such as cell division, CDMA, and

TDMA [12], current IoT systems have implemented limited strategies to address co-channel inter-

ference. The limitations of traditional CSMA mechanism have propelled the adoption of TDMA

in IEEE 802.15.4-based standards [72]; however, current IoT systems including ISA100.11a and

WirelessHART only allow one user at each time slot and frequency or allocate dedicated time slots

to avoid interference, under which system capacity is underutilized and would potentially lead to

inability of high data-rate and delay-sensitive applications such as real-time control. Therefore,

improved TDMA scheduling will be desirable. In addition, prior research has confirmed that power

control can improve system capacity [10], and many studies have showed the benefits of joint power

control and scheduling as well [37][39]. Unfortunately, distributed TDMA scheduling and power

control is challenging due to the NP-hardness of optimal scheduling and the fact that there may

not always exist a feasible power assignment for every set of concurrent transmissions. Moreover,

despite field experiments in [46] evidenced that the received signal strength across links of wire-

less sensor networks changes over time and suggested that adaptive power control is required to

compensate time-varying channel attenuation, many of the existing work on joint scheduling and

power control in IoT have overlooked channel dynamics and assumed constant channel gain.

Figure 4.1: Transmission power vs RSSI at different times
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Fig. 4.1 demonstrates the RSSI change over time. As showed in Fig. 4.1, received transmission

power at different times is different, which indicates power control should be necessary and required

to obtain successful packet reception.

In the last chapter, we dived into the Perron-Frobenius theory [57], adopted Physical-Ratio-K

(PRK) interference model [61] and NAMA TDMA scheduling algorithm [65] to build the whole

distributed framework while both were specifically designed to facilitate distributed scheduling.

In this chapter, we aim to develop a field-deployable, joint TDMA scheduling and power control

algorithm for supporting reliable wireless networks in IoT systems. This algorithm is designed to

implement distributed scheduling and power control with an objective of maximizing concurrency

and tracking SINR over channel dynamics. We employed feedback control mechanism to adapt

scheduling K and transmission power by current scheduling K and SINR measurement. In a

slowly time-varying system, the scheduling K will be expected to change at a large time-scale

while transmission power will be updated probably at each time slot depending on the scale of

channel variation. We evaluated our algorithm, and the simulation results demonstrated significant

improvement in concurrency and successful tracking of target SINRs. To the best of our knowledge,

the proposed scheme in this chapter is the first one that can satisfy SINR requirement toward

channel dynamics without sacrifice in concurrency. This fundamental design will pave the way for

future field deployment of IoT as the development and penetration of IoT expands to a large scale.

The remaining parts of this chapter are organized as follows: Section 4.2 defines the system

model and identifies the problem; Section 4.3 introduces preliminary method; Section 4.4 elaborates

on the framework and algorithms; Section 4.5 evaluates the design; Section 4.6 concludes the paper.

4.2 System Model and Problem Formulation

Given a set of links in wireless sensor networks, each link’s receiver will receive signals from

other links’ senders due to broadcast nature of electromagnetic wave. The received signals from

other links are called co-channel interference. According to the SINR model, a link would transmit

a packet successfully if and only if
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pihiGii∑
j 6=i pjhjGij + ni

≥ βth (4.1)

where pi is link i′s transmission power; Gii is link i′s channel gain; hi represents fading; Gij is the

channel gain from link j′s sender to link i′s receiver; ni is link i′s receiver-side thermal noise; βth is

link i′s target SINR. We assume all links have the same target SINR.

Transform all links′ SINR requirements into the matrix form. We have

P (t) ≥ F (t)P (t) + η (4.2)

where

Fij(t) =


βthhj(t)Gij/hi(t)Gii, if i 6= j

0, if i = j

and

ηi = βthni/Gii

Here P (t) is the variant, and F (t) is normalized gain matrix at each time instant. If a solution

exist for each time instant, we can claim that (4.2) can be satisfied. In this sense, we define a

maximal feasible subset, called MFS as a subset into which the addition of any one more link will

make it infeasible. Furthermore, we denote all maximal feasible subsets as an union

U = {S1, S2, ..., Sm} (4.3)

and their corresponding optimal power as

P ∗i = {P ∗1 , P ∗2 , ..., P ∗m} (4.4)

In the best case, all scheduled links at each time slot are expected to be a MFS and transmit

with optimal power so as to maximize concurrency and guarantee reliability. However, finding

these maximal feasible subsets are known as NP-hard. Even in a centralized scheme in which all
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links’ channel information are known, it is almost infeasible to obtain the MFS and their optimal

transmission power in reasonable computation time, not to mention that wireless ad hoc networks

tend to be distributed. Therefore, we need to figure out a simple way to identify feasible links and

remove infeasible links.

4.3 Preliminary Adaptive Power Control

Let’s consider adaptive power control. Non-cooperative power control is another type of power

control. For these power control schemes, each link′s transmission power depends on their own

channel gain. These algorithms have proved that they can obtain an increase in throughput for

a random network. It is a potential direction for power control to use simple transmission power

that is related to channel gain or received SINR to obtain an increase in throughput and reliability.

Here we would like to introduce a few adaptive power control schemes including channel inversion

[73], fractional power control [23], and step-by-step power control.[48].

Channel inversion sets transmission power inversely proportional to channel gain. If the channel

of link i can be represented by hiGii, transmission power by channel inversion is

Pi =
1

hiGii
(4.5)

Therefore, the received power equals to 1 for all links. The main purpose of this approach is to

completely compensate the channel attenuation. On the other hand, the transmission power by

fraction power control is

Pi =
1

(hiGii)α
(4.6)

where α is the fractional number between 0 and 1. Jindal et al. in [23] proved that if h meets

Rayleigh fading distribution and the network can be modeled as a Poisson network, any link can

obtain the maximum package delivery rate when α = 0.5. Fractional power control has been

adopted in LTE to improve system capacity. These approaches are common in quickly responding

to channel variations. They may be able to obtain long-term packet delivery rate. But obviously
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there is not any proof that they can guarantee short-time or instantaneous packet delivery rate

since most of them only care about their own channel variation.

Another adaptive power control is to use the canonical distributed power control, which by

itself is an iterative power control method. Tim Holliday et al. [48] have directly applied DPC into

fading networks. Applied in a fading channel rather than a constant channel, the algorithm will

not converge any more. The authors also consider adjusting transmission power by a fixed step

size or adaptive step size and have obtained some experimental results. Those experimental results

showed that the DPC algorithm can bring great SINR variation and average SINR overshot. The

fixed step-size algorithm can perform better. But the issue is how to select the appropriate step

size. Moreover, no theoretical analyses have demonstrated the instantaneous SINR characteristics.

Figure 4.2: The prks architecture

Zhang et. al in [74] has investigated adaptive scheduling algorithm as shown in 4.2. In PRKS,

data packet transmissions are executed in the data plane, and their transmission status (i.e., success

or failure) serve as the feedback to the control plane which schedules data transmissions to ensure

application-required link reliability. In particular, the status of data transmissions are used by

individual links to estimate their in-situ link reliabilities, which in turn triggers the PRK model

adaptations at individual links. The instantiated PRK model parameters are used together with

signal maps to identify interference relations between transmissions, which in turn are used to enable
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TDMA scheduling with predictable link reliability. There are a few extensive work in [75][76][77] as

well. However, so far no power control has achieved short-term reliability in a dynamic system. One

main reason is the convergence rate of power control algorithms. To achieve short-term reliability,

the convergence rate of power control should be much faster than the channel variation rate. It

is challenging in a dynamic system. The scheme which combines fractional power control or its

variants with PRK model is under study. We believe these adaptive power control algorithms will

build a basis for reliability guarantee and timeless requirement in dynamical wireless communication

systems.

4.4 Proposed Distributed Scheduling K and Power Control

In this section, we present a distributed algorithm to obtain near-optimal scheduling and power

control. This algorithm consists of the channel measurement module, NAMA scheduling module,

SINR measurement module, PRK adaptation and transmission power update module.

4.4.1 The definition of feasible K

Physical-ratio-K model in [61] is an interference model that defines the conflict relationship

between two links. In other words, this model determines whether two links can transmit at the

same time or not. According to the PRK model, a link j conflicts with a link i if

Gij ≥
Gii
Kii

(4.7)

We find that the parameter Kii of the PRK model is directly related to the feasibility of gain

matrix F . For each link, a given Kii would divide all links into conflicting links and concurrent

non-interfering links. If Kii is too large, most links will be regarded as conflicting links and sacrifice

concurrency; if Kii is too small, the concurrent links are not necessarily non-interfering. Thus

finding the exact Kii is very important.

Definition 2. The feasible K for link i, denoted by Ki
f , is the minimum K such that all links

satisfying Gij ≤ Gii
Ki
f

can transmit with link i at the same time under optimum power.
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Out of all MFSs, we represent all the MFSs that include i as

Ui = {Si1, Si2, ..., Sim} (4.8)

and corresponding transmission power as

Pi = {Pi1, Pi2, ..., Pim}. (4.9)

The links in Ui are those links that can transmit at the same time as i, denoted by Ni. By the

definition of Ki
f , we have

Ki
f = min

j∈Ni

Gii
Gij

(4.10)

We can prove that Ki
f is the minimum K for link i, that is, the minimum boundary that divides

concurrent links and conflict links. If we have Kii < Ki
f , there must exist a link which satisfies

Gij = Gii/Kii and is allowed to transmit at the same with link i. However, it is not among

concurrent links sinceGij = Gii/Kii > Gii/K
i
f . Allowing this link to transmit simultaneously would

not guarantee feasibility. Similarly, letting K > Ki
f will miss some concurrent links. Therefore, Ki

f

is the minimum value under optimum power.

Once we find the feasible K for each link and build conflict relationship, we can use NAMA

scheduling [65] to select concurrent links. NAMA scheduling is a distributed approach to channel

access scheduling for wireless ad hoc networks. Based on known conflict relationships, each link

calculated a priority for itself and all its conflict links. A link would get access to the channel if it

has the highest priority among all its conflicting links. The priority is calculated as follows

pti = Rand(k ⊕ t)⊕ t, k ∈Mi ∪ i (4.11)

where Mi is a set of links that conflict with link i.

Therefore, back to feasibility condition and PRK model, to ensure reliability becomes finding

the feasible K and optimum transmission power for each link. Under channel dynamics, feasibility

condition would change and scheduling K(i.e., the parameter K of the PRK model) may change

as well. The next section will present how the system converges to an near-optimal K and feasible

transmission power over channel variations.
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For slowly time-varying IoT systems, the channel measurement module will measure average

channel at setup stage and update it at a long timescale. All packets are sent in the data channel.

At each time slot, each sender will run NAMA scheduling to determine if it can obtain channel

access or not. When a sender gets the channel access, it will send a packet, and its receiver will

then measure current SINR and send it back to the sender via acknowledgement packet. So the

whole system requires ACK feedback. When the sender receives current SINR, it will calculate the

scheduling K and transmission power for the next time slot according to current K, transmission

power and SINR. This distributed framework will run as shown in Algorithm 3.

4.4.2 The distributed algorithm

The core part of this algorithm is updating scheduling K and transmission power. To update

scheduling K and transmission power, we use iterative approach based on feedback mechanism.

Since it is challenging to achieve the exact target SINR and also not necessary, we set a tolerance

area as SINR target region, [βth, Uβth], to tolerate any slight variation. We set a reference interval

[Klref ,Krref ]. Specifically, Klref = β/(1 + 1/U) and Krref = β/(1 − 1/U). Despite not all links’

feasible K are bound in the reference interval [Klref ,Krref ], it is a desirable interval for each

link considering feasibility condition. Limiting all links’ K in this interval would lose a little bit

concurrency but the strategy of regulating all links’ interference in a range would keep a balanced

interference among links and maintain a stable system.

The K reference interval and SINR target region divide K −SINR plane into multiple regions

as shown in Figure 4.3. We update K and transmission power by this plane. To decouple the

interactive impact of scheduling and power control, we first change K under both overshoot and

undershoot of SINR. The rules are as follows:

• Case 1. In case that the current SINR is greater than SINR margin Uβth, if K > Krref , the

scheduling K should be decreased; otherwise, keep K unchanged and decrease transmission

power.
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Figure 4.3: The plane of scheduling K and SINR. Transmission power and K will be adjusted by

their current location in the plane.

• Case 2. In case that the current SINR is smaller than target SINR βth, if K < Krref ,

scheduling K should be increased; otherwise, transmission power should be increased.

The algorithm is as described in Algorithm 2. We now explain how to calculate kt+1
i and pt+1

i .

If βti > Uβth and kti > Krref , we think kti can be further decreased to tolerate more interference

with a benefit in improving concurrency. Expecting βt+1
i = βth, we have

Iti + ∆It+1
i = pt+1

i Gii/βth (4.12)

where ∆It+1
i are allowed interference increase from decreasing K. Further,

Iti/Gii +
∑
j∈st+1

i

pt+1
j /kij = pt+1

i /βth (4.13)

where kij = Gii/Gij and st+1
i is the set of all newly-added links satisfying kij ≥ kt+1

i . Because it is

difficult to obtain the set st+1
i and know each link’s transmission power, we further relax (4.13) to

Iti/Gii + pt+1
i /kt+1

i = pt+1
i /βth (4.14)

Let Iti/Gii = pti/β
t
i and γti = βth/β

t
i , we obtain kt+1

i = 1/(1 − γti )βth. Since we don’t hope kt+1
i

changes too much at each time slot to cause system oscillation, we limit kt+1
i ≥ klref . It’s worthwhile
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to note that kt+1
i is an approximate value. Further adjustment may be needed before converging

to a fixed value.

If βti > Uβth but klref < kti < krref , we think K is within reference range and doesn’t need

to change, we only reduce power to satisfy βt+1
i = Uβth. Specifically, square root power control is

adopted to avoid large transmission power change. If βth < βti < Uβth but klref < kti < krref , K

and transmission power will keep unchanged at the next time slot. Once a few links settle down

and impact on other links don’t change, the whole system will start to converge. In addition, we

control the range of power increase at each time step so as to reduce the settle-down links to become

unstable.

We can use the same approach above to obtain kt+1
i = 1/(γti − 1)βth when kti < krref . If the

actual increased kt+1
i is larger than Krref , we will further increase transmission power to ensure

expected SINR, M = U/2. Let

Iti/Gii − pti/kt+1
i =

pt+1
i

Mβth
(4.15)

Replace kt+1
i = Krref , we get

pt+1
i = M

Krref − βti
Krref

βth
βti
pti (4.16)

For wireless sensor networks, SINR overshoot may be acceptable but undershoot is not desirable.

So we attempt to satisfy SINR requirements right away by scheduling and further power control

when scheduling doesn’t work in the case the link gain itself is very small.

The whole system is expected to keep scheduling K constant or change slowly. In the case

there is no channel dynamics, scheduling and transmission power converge to the fixed value. The

SINR region can be used to tolerate interference variation from random NAMA scheduling. Once

variations from channel dynamics are over the system tolerance level and make links infeasible, the

system will recalculate scheduling K and transmission power.

4.5 Simulation Results

In this section, we verify the convergence property of the whole framework and algorithms, and

evaluate receiver-side SINR variation and concurrency in networks. We use Matlab to simulate
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Input: kti , β
t
i , p

t
i, βth

Output: pti, k
t
i

γti ←
βth
βti

if γti < 1/U then

if kti > Krref then

kt+1
i ← max( 1

1−γti
βth,Klref )

end

else

p(i)← max(
pti
U ,
√
Uγtip

t
i)

p(i) = max(p(i), Pmin)

p(i) = min(p(i), Pmax)

end

end

if γti > 1 then

if kti < Krref then

kt+1
i ← 1

γti−1
βth

if kt+1
i >= Krref then

pti ← min(Upti,M
Krref−βti
Krref

γtip
t
i)

kt+1
i ← Krref

end

end

else

pti ← min(Upti,
√
Mγtip

t
i)

end

pti = max(pti, Pmin)

pti = min(pti, Pmax)

end
Algorithm 2: Update Scheduling K and Transmission Power
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a network in a rectangle area with network node density λ, where all senders are randomly and

uniformly distributed and their receivers are around the senders with a random distance between

dmin and dmax. The traffic model is a full-buffer model, which means packets are always ready

to transmit if they get a chance to access the channel. Constant channel and dynamic channel

with Rayleigh multi-path fading are simulated separately. The maximum transmission power and

minimum transmission power is 5dBm and -10dBm, respectively. The channel attenuation is in the

range [−70dB,−120dB]. Each time slot is allocated 5ms. All simulation parameters are showed in

Table 4.1.

Table 4.1: Simulation Parameters

Symbol Parameter Default value

W Network width 100 m

L Network length 100 m

λ Network density 0.005

dmin Minimum link length 5m

dmax Maximum link length 10 m

α Path loss exponent 3.5

µh Rayleigh fading mean 0 dB

ni Thermal noise -99 dBm

βth Target SINR 5 dB

Pmax Maximum transmission power 5 dB

Pmin Minimum transmission power -10 dB

P0 Initial transmission power 0 dB

U SINR margin 2

T Timeslot duration 5 ms

4.5.1 Convergence property

Set the default SINR margin U = 2, we have Klref = 2/3βth, Krref = 2βth. Starting with

K0 = 3βth and P0 = 0 dBm, we first observe how scheduling K, transmission power, and SINR

change under constant channel. Fig. 4.4 shows that scheduling K for each link will be fixed around

50 time slots, and Fig. 4.5 shows that power control will converge to the fixed value around 100 time
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slots. These results are as expected while our design has posed a limitation on the adjustment range

of transmission power at each time slot to obtain a stable system. As in Fig. 4.8, all links’ SINR is

over the target value. This suggests that our design ensures tracking and satisfaction of the required

target SINR. Our proposed algorithm is inherently a heuristic algorithm. The simulation results
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Figure 4.4: Scheduling K converges to a fixed point for each link

have showed fast convergence. The asymptotic analysis of computation complexity shall be a future

topic.

4.5.2 Adaptation to dynamic Channels

We model the wireless channel as slowly time-varying channel. Each link’s channel gain at

current time slot is the average value over channel gains of a few previous time slots and a random

Rayleigh fading. The number of dependent slots is set as W = 20. Fig. 4.6 indicates that channel

variation is around 2dB. Under this level of channel dynamics, scheduling K is mostly the same as

constant channel for the same instance of simulated work, so here we just present the variation of

transmission power. As shown in Fig. 4.6, for some links, transmission power is adjusted due to

channel dynamics and then keep stable. Fig. 4.8 and Fig. 4.9 are the SINR variation over the
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Figure 4.5: Transmission power converges to a fixed point for each link

same network instantiation under constant channel and Rayleigh fading. We can see the difference

where SINR has increased and it is a result from transmission power adjustment.

4.5.3 Concurrency

Concurrency is the main performance metric we care about. We compare our schemes with the

optimal scheduling and power control and other two typical and state-of-art approaches.

• ALOHA scheduling with Fractional power control. ALOHA scheduling is a random

scheduling. Each link has an equal chance to transmit or not. For fractional power control

[23], each link updates their transmission power by their instantaneous channel gain, Pt+1 =

P0/
√
Gii.

• NAMA scheduling with sufficient K and FM control. We calculate a sufficient K

for each link at the first time slot. This sufficient K will ensure all non-conflicting links

are feasible under constant power. We then run classical Foschini and Miljanic’s distributed

power algorithm [18] with Pt+1 = βth
βt
Pt.
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Figure 4.6: Instantaneous channel gain over time slots under Rayleigh fading

• Optimal scheduling and transmission power. CPLEX is an optimization tool. We

use mixed integer linear programming model in CPLEX and obtain the maximal number of

feasible links and their transmission power given the constant gain matrix of a set of links.

We run each scheme 50 times and get the average value. Fig. 5.7 suggests that given a random

network, nearly 60% links can transmit simultaneously under optimal transmission power. ALOHA

scheduling has the least number of feasible links, which verifies the importance of well-regulating

scheduling. Compared to NAMA scheduling with efficient K, our proposed scheme improves con-

currency by 70%. This result indicates the benefit of adaptive scheduling.

4.6 Conclusion

In this chapter, we has aimed to leverage scheduling and power control to support reliable

IoT applications. Specifically, we have focused on ensuring high concurrency while guarantee-

ing application-required communication reliability. We have adopted the PRK interference model

and NAMA scheduling and proposed our scheduling K and power control framework. We have

conducted experiments and verified that this framework enables distributed convergence in joint
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Figure 4.7: Power update for each link over Rayleigh fading

scheduling and power control with advantages in the ease of implementation, significant improve-

ment in concurrency and SINR guarantees. The proposed algorithm is expected to serve as a

foundation for distributed scheduling and power control as the penetration of IoT applications ex-

pands to scenarios where both the network capacity and communication reliability becomes critical.
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Figure 4.8: SINR variation for each link under constant channel
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CHAPTER 5. ANALYSIS OF JOINT SCHEDULING AND POWER

CONTROL FOR PREDICTABLE URLLC IN INDUSTRIAL WIRELESS

NETWORKS

In this chapter, we move toward addressing large-scale channel dynamics. We model dynamical

wireless channel as AR fading channel and analyze the contribution and limitation of power control

in guaranteeing per-packet reliability.

5.1 Introduction

While industrial communications between sensors, controllers, and systems still primarily use

wired networking solutions today, wireless solutions have been finding increasingly more appli-

cations in mission-critical IoT settings. For instance, to increase efficiency in factories, wireless

technology is essential for communicating with automated mobile equipment, such as shuttle sys-

tems, so that they can easily move around the automated storage and retrieval areas. For oil

and gas producers and refineries, minimizing systems downtime is important, and the industry

is using more and more sensors, networks, and analytic to generate predictive insight into equip-

ment performance and maintenance. Automotive manufactures are also using on-board diagnostic

data to detect equipment failures, safety risks, and defects [5]. Commercial transportation firms

are using streaming sensor data from vehicles to identify potential breakdowns and perform pre-

ventive and predictive maintenance [6]. Agricultural and mining companies are using wireless

networks to coordinate the movement of equipment in the field, develop driver-less fleets, improve

fleet maintenance, and enhance safety. Ultra-reliable, low-latency communication (URLLC) is ex-

pected to enable technicians wearing AR head-mount-displays in factories to communicate with

remote experts in troubleshooting [7]. Compared to human-oriented cellular networks, industrial

IoT applications are mission-critical and often-times safety-critical. Thus they may well require



www.manaraa.com

59

predictable URLLC services, e.g. 99.999% packet delivery ratio/reliability and 1ms air-interface

delay, respectively[8][9].

Ensuring predictable per-packet communication reliability is a basis of predictable URLLC,

since packet loss not only reduces the reliability and increases the latency in communication but

also makes communication reliability and latency unpredictable. For predictable per-packet com-

munication reliability, industrial wireless networks need to address co-channel interference and

wireless channel dynamics with both small-scale variations and large-scale variations.

More specifically, communication reliability can be characterized by the bit error rate (BER)

and the packet delivery rate (PDR) for a receiver in decoding signals with a specific signal-to-

interference-plus-noise-ratio (SINR). For instance, for a link with IEEE 802.15.4 radios, the BER

for a packet reception is computed as follows [78]:

BER(γ) =
8

15
× 1

16
×

16∑
k=2

(−1)k
(

16

k

)
e(20×γ×( 1

k
−1), (5.1)

where γ is the SINR. Assuming the BER of each bit in a packet is independent and identically

distributed, the PDR is calculated as follows:

PDR(γ, l) = (1−BER(γ))8l, (5.2)

where l is the packet length. Therefore, for each packet with a received SINR at the receiver side,

we can estimate the packet delivery ratio.

Based on SINR model, the receiver-side SINR will be easily affected by other links in the

network. Meanwhile, the dynamics of each link will make the variation of SINR more complex and

unpredictable. So the challenge is how to enable a predictable SINR at each time instant in the

presence of complex dynamics and uncertainties.

Power control and scheduling are basic enablers of reliable communication at the physical layer

and MAC layer of wireless networks respectively [49]. Nonetheless, they are subject to challenges

such as harsh environments, dynamic channels, and distributed network settings in industrial IoT.

Existing solutions are mostly based on heuristic algorithms or asymptotic analysis of network
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performance, and there lack field-deployable algorithms for ensuring predictable per-packet com-

munication reliability [39][40].

Gupta et al. [36] have proved that when n identical randomly located nodes, each capable of

transmitting at W bits per second, forms a wireless network, the throughput is only Θ( W√
n

) for each

node, even in the optimal circumstances. This finding shows that when the number of concurrent

nodes in a unit area increases, the throughput for each node can approach 0. In this sense, it

is crucial to mitigate co-channel interference and improve system spatial reuse efficiency. Other

than throughput, scheduling is needed to ensure communication reliability. CSMA- and RTS-CTS

based channel access control mechanisms may only enable a data delivery ratio of 16.9% and 36.8%,

respectively[61]. Therefore, for ultra-reliable communication systems, TDMA scheduling has been

widely studied in mission-critical systems.

Joint scheduling and power control have also been studied. Elbatt and Ephremides [37] first

introduced the joint scheduling and power control framework in wireless ad hoc networks and

formulated this issue as a Mixed Integer Linear Programming (MILP) [42] optimization issue. Due

to the NP-hard characteristic, approximation algorithms naturally arise. Wan et al. [39] suggested

that the cumulative co-channel interference beyond a certain range can be upper bounded under

the link-length-based path loss law and directed the scheduling issue into selecting a maximum

set of independent links. Che et al. [40] and Wan et al. [39] also obtained the maximum set of

independent links. Magnús M. Halldórsson conducted extensive research on joint scheduling and

power control [43]. However, those studies mainly focused on obtaining asymptotic characterization

of joint scheduling and power control when using obvious transmission power algorithms [44], and

those proposed algorithms are rarely implementable in a distributed way.

Towards developing field-deployable approaches to joint scheduling and power control in en-

suring per-packet communication reliability, we analyze the roles of scheduling and power control

as well as their interactions in ensuring per-packet communication reliability and high network

throughput. Our main contributions are as follows:
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• By investigating properties of the interference gain matrix, we for the first time demonstrate

the relationship between scheduling and power control SINR feasibility of individual links.

The characteristics of gain matrices are such that close-by links have significant impact on

the power control SINR feasibility of a link, which suggests that silencing close-by links would

be a promising scheduling strategy of ensuring power control SINR feasibility as well as high

communication concurrency and throughput.

• We present the exact picture of how power control can help improve transmission concurrency

by comparing scheduling with constant transmission power and optimal transmission power

respectively in dynamic networks. The significant improvement indicates that there is a big

potential for power control to help compensate for the sacrifice that scheduling algorithm

usually brings while ensuring reliability.

• We evaluate the behavior of a candidate framework in achieving SINR requirements in differ-

ent channel dynamics settings. Our evaluation demonstrates the challenges of field-deployable

joint scheduling and power control for ensuring predictable per-packet SINR and reliability, for

instance, the limited capability of well-known power control algorithms (e.g., constant power

and fractional power) in regulating SINR variations. The study suggests a few promising

future directions of research, for instance, addressing the randomness of NAMA scheduling.

The remaining parts of this chapter are organized as follows: Section 5.2 analyzes the power

control SINR feasibility and proposes a scheduling strategy; Section 5.3 presents the contribution of

power control; Section 5.4 evaluate the behavior of a candidate framework under different channel

dynamics settings; Section 5.5 concludes the chapter.

5.2 Scheduling with Close-By Links Silent

In this section, we dive into theoretical aspects of joint scheduling and power, and explore

strategies of constructing concurrent links while ensuring power control SINR feasibility. We first

revisit the gain matrix model and Perron-Frobenius theorem to prove that scheduling is an es-
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sential technique in guaranteeing link reliability, and then we show that silencing closing-by links

is a promising scheduling strategy which ensures power control SINR feasibility while improving

transmission concurrency and throughput.

5.2.1 Need for Scheduling

Let’s revist SINR model. In a wireless network with multi-path channel fading, shadowing, and

co-channel interference, the receiver-side SINR at a link i (i = 1, 2, 3...n) can be represented as:

SINRi =
pihiigii∑

j 6=i pjhijgij + ni
, i = 1, 2, 3...N (5.3)

where gij > 0 is the power gain from the transmitter of the jth link to the receiver of the ith link,

pi is the power of the ith transmitter, and ni is the thermal noise power at the ith receiver.

As denoted in (5.3), the quality of each link is determined by the signal to interference plus

noise ratio (SINR) at the intended receiver. Based on a given modulation and coding scheme,

each link is assumed to have a minimum SINR requirement γi > 0 that represents the ith user’s

reliability requirements. Since rate control is not considered in this paper, we assume all links have

the same modulation and coding scheme, thus the same . This SINR constraint can be represented

in a matrix form as

(I − F )P ≥ η, with P > 0, (5.4)

where F is a gain matrix with each element representing interfering links’ channel gain scaled by

the SINR constraints and channel gain,

Fij =


γgij
gii
, if i 6= j

0, if i = j

, (5.5)

η is the vector of normalized noise power,

η = (
γn1

g11
,
γn2

g22
, . . . ,

γnN
gNN

)T , (5.6)

and P = (p1, p2, ..., pn)T is the vector of transmission powers.



www.manaraa.com

63

The gain matrix F has non-negative elements as indicated in (5.5). Let ρF be the Perron-

Frobenius eigenvalue of F. Then from the Perron-Frobenius theorem and standard matrix theory

[57], we have the following equivalent statements:

• ρF < 1 when η 6= 0 and ρF ≤ 1 when η = 0.

• There exists P > 0 such that (I − F )P ≥ η.

The above statements demonstrate the conditions for SINR feasibility of power control, which

we call power control SINR feasibility. That is, in real-world settings with non-zero background

thermal noise, a set of links can be scheduled to transmit concurrently while ensuring the required

SINR through power control if ρF < 1; otherwise, when ρF ≥ 1, a subset of links shall be silenced

(i.e., not transmitting) since their SINR requirements and communication reliability cannot be

satisfied. Therefore, when not considering minimum or maximum transmission power constraints

(i.e., any transmission power is available at transmitters), the gain matrix F determines the power

control SINR feasibility of a set of links.

When a set of links are determined unfeasible by the gain matrix, scheduling policy must be

employed. That’s why all networks in real world require an elegantly designed scheduling strategy,

such as CSMA or TDMA with responding algorithms.

5.2.2 Strategy of silencing closed-by links

Now we discuss the strategy of among a set of links which link should be transmitted and kept

inactive. We start from the investigation of characteristics of the non-negative gain matrix F . To

simplify discussion, we first define non-zero entry in the gain matrix F as effective interference

factor :

fij =
γgij
gii

, i, j ∈ {1, 2, ...N} (5.7)

Furthermore, based on the effective interference factor, we define accumulated interference factor

as follows:
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Definition 3. The accumulated interference factor is defined as sum of interference from all links

normalized by the link gain and scaled by target SINR, represented as

Ii =
∑
j 6=i

γgij
gii

, i, j ∈ {1, 2, ...N} (5.8)

Ii is inherently the sum of the i-th row of F . Assume Ii ∈ (Imin, Imax), i ∈ {1, 2, ...N}, where

Imin and Imax are the minimum and maximum row sum, respectively. We have the following

conclusion

Corollary 7. Given a set of links, Imin ≤ ρF ≤ Imax. If any interference factor is removed with

fij = 0, ρF will be decreased.

It can be easily approved by the matrix theory in [79]. The statements above indicate that if the

accumulated interference factors for all links are larger than 1, the Perron root will be larger than

1; otherwise, the Perron root can be less than 1. In the special case when accumulated interference

factors for all links are equal to 1, the Perron root is equal to 1. Then, we have

Proposition 1. Given a set of links in a wireless network with power law signal attenuation,

removing closing-by links in scheduling tends to increase transmission concurrency while ensuring

power control SINR feasibility.

Proof. According to power law path loss model, the individual link’s effective interference factor

can be written as gij = c
dαij

, where c is a constant, dij is the distance from interfering sender to

link’s receiver, and α is the path loss index. The close-by senders would have the shortest dij and

thus the largest gij . According to Corollary 7, removing large items in the matrix will help reduce

Perron root and make the gain matrix feasible. Meanwhile, removing far links will help reduce

gain matrix. However, their impact on the Perron root of gain matrix is much less significant, and

removing the large elements in F will be more efficient than removing small elements in reducing

Perrron root.

The strategy of silencing closing-by links coincides with the guard area scheme [55]. For the

guard-area scheme, an area around a given link will be set so that all links whose transmitters are
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within that guard area will not be allowed to transmit packet if the given links is transmitting a

packet. Zhang et al. [61] have also proposed the Physical-Ratio-K (PRK) interference model which

has the same purpose of mitigating co-channel interference by silencing close-by links in scheduling.

Next we evaluate the performance of guard-area based scheduling in time-varying networks.

5.2.3 Guard-area based scheduling in time-varying networks

In this section, we would like to identify the performance of guard-area based scheduling in time-

varying networks with random settings and demonstrate the benefits of the proposed scheduling

policy. Haenggi et al. [55] considered transmitters distributed in a stationary fashion with homo-

geneous Poisson point process Φ of constant density λ. Every transmitter is assumed to transmit

with a unit power. A guard area is built for each link so that within that area no other links can

transmit packets. Assume the power law path loss model, we use u to represent the guard-area,

which is the ratio of the maximum distance between the transmitter of any interfering link and the

receiver of the data communication link of interest to the length of the data link itself. Since all

settings are a random model, packet delivery ratio is considered as the performance metric:

P{SINRi ≥ γ} = P{chii
dαii
≥ γ(

∑
j∈Φ:dij>udii

chij
dαl

)}, (5.9)

where c is a constant, u is the guard area radius, dii and dij are the link length of link i and the

distance from link j’s transmitter to link i’s receiver, and hii and hij are independent Rayleigh

fading variables representing the channel fading coefficients of link i and the interference from link

j’s transmitter to link i’s receiver. The noise is negligible here when the interference is dominant

over noise. The detailed formula can be found in [55].

As shown in Figure 5.1, when the guard area is larger, packet delivery rate will be higher.

Meanwhile, it demonstrates from another perspective that under random networks, scheduling

closing-by links will bring benefit for the packet delivery ratio as well. However, the sacrifice would

be the decrease in concurrency since larger guard area means that more links will be inactive (i.e.,

not scheduled to transmit). In regards to concurrency, we will discuss in the next section.
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Figure 5.1: Comparison of packet delivery rate with different guard area

5.3 Why Power Control?

For a single link, it’s quite intuitive that the transmission power at the sender should adapt to

channel attenuation so that the received power at the receiver is greater than a given threshold.

For large-scale networks, the problem of power control becomes much more complex. Now we

discuss the role of power control in large-scale networks. The analysis has built its ground on the

Perron-Frobenius theorem and Foschini-Miljanic’s algorithm [18].

5.3.1 Revisit Foschini-Miljanic’s algorithm

Let’s revisit the Perron-Frobenius theory again. According to the Perron-Frobenius theorem, if

there exist solutions for SINR requirement, an optimal point can be obtained and denoted as

P ∗ = (I − F )−1η. (5.10)
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where P ∗ is the minimal transmission power among all feasible solutions, called fixed point . As

stated in [31], all solutions will form a cone in a high-dimension space. For the scenario of two

links, we can describe the fixed point in a two-dimensional plane. As shown in Figure 5.2, the

line p1 = f1(P ) represent the SINR requirements for link 1, and p2 = f2(P ) represents the SINR

requirements for link 2. P* exists when two curves exist an intersection.

Figure 5.2: The fixed point with a set of two links

Based on the theory above, Foschini and Miljanic [18] proposed a simple distributed power

control algorithm where they proved that, given SINR requirements, the optimal transmission

power can be obtained through the following iterative computation:

P (t) = FP (t− 1) + η, (5.11)

and limt→∞ P (t) = P ∗. Furthermore, the receiver-side SINR of every link i converges to the desired

γ, that is, 27 limt→∞ γi(t) = γ.

A significant characteristic is that the algorithm above can be implemented locally as follows

Pi(t) =
γ

γi(t− 1)
Pi(t− 1), i = 1, 2, 3, ... (5.12)
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This finding is a breakthrough. It means that each link can change its transmission power by

its measured SINR at each time slot. This is a fundamental finding for investigating distributed

power control. There are a few valuable characteristics under transmission power constraints and

infeasible condition. We would present them in Section 5.3.3.

5.3.2 Concurrency and outage probability improvement by power control

As we have discussed in the last subsection, a set of links can transmit concurrently only when

the corresponding Perron root of the gain matrix is less than 1. It doesn’t require that all links

receive the same interference. Thus unbalanced transmission power can help improve concurrency.

We can formulate the concurrency issue as follows:

max
xi,pi

N∑
i=1

xi (5.13)

Subject to

piGiixi∑
j 6=i pjGijxj + ni

≥ βixi, i = 1 . . . N (5.14)

where xi is the indicator variable {0,1}. When xi = 1, it mean that link i is scheduled to transmit;

otherwise, link i shall not transmit. This model would help find the maximum set of concurrent

links under all conditions with the SINR constraints satisfied. With the maximum concurrency,

the transmission power would be optimal as well. In other words, optimal transmission will help

increase concurrency.

Problem (5.13) is NP-Hard in general. We can introduce a slack constant Z, as a very large

number, and transform this problem into standard Mixed Integer Linear Programming, which can

be easily solved with an optimization tool.
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min f ∗X ′ (5.15)

Subject to (5.16)

AP ≤ b (5.17)

0 ≤ P ≤ Pmax ∗X (5.18)

variable (5.19)

X ′ = [P X] (5.20)

where, A = F − I, b = Z(Iv−X)−η and f = −Iv. Iv represents a vector with all number 1. In the

transformed form, we can see that Z(1 − xi) is introduced for each link. The transmission power

can be zero and is constrained by the scheduling variable.

When it is not easy to obtain optimal transmission power and maximal concurrency, heuristic

power control algorithms such as the fractional power control algorithm [23] may be used. In

fractional power control, the transmission power is computed as follows:

Pi =
P0

E[h−wii ]
h−wii , w ∈ [0, 1], (5.21)

where hii is the fading coefficient of the link i, and P0 is a constant. Jindal et al. [23] have shown

that letting w = 0.5 tends to minimize communication outage probability.

5.3.3 Numerical analysis

In this section, we would like to demonstrate the numerical results of power control. Consider

a network in a factory with four spatially-separated links.1 In the first numerical example we will

assume every link in the system has constant channel where the gain matrix F (5.5) is as follows:

1The purpose of using a small network here is to illustrate the key insight into the behavior of power control
without being distracted by complexities of large-scale networks.
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Figure 5.3: Transmission power: feasible condition
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Figure 5.5: Transmission power: infeasible condition
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Figure 5.9: Transmission probability with optimal power

F =



0 0.12 0.275 0.3

0.24 0 0.48 0.1

0.12 0.55 0 0.38

0.09 0.21 0.79 0


(5.22)

We assume the target SINR threshold γ = 5 and the normalized noise η = {0.001, 0.001, 0.001, 0.001}.

Given the gain matrix, the row sums are S = {0.695, 0.82, 1.05, 1.09}. Using the MatLab op-

timization toolbox, we obtain the Perron root ρ = 0.9459 and the optimal transmission power

P∗ = {−18.2898,−17.899,−17.0250,−16.6933}. So we should expect a feasible transmission power

solution and the Foschini-Miljanic algorithm would converge stably. Meanwhile, when we change

F a little bit and set F23 = 0.68, we found that ρ = 1.0668 and the set becomes infeasible such that

link 3 will be unable to transmit while other links still meet the required SINR threshold.

Transmission power converges to the fixed point in the feasible condition (see 5.3 and 5.4), and

diverges and reaches the maximum value in the infeasible condition (see 5.5 and 5.6). Note that the

Y axes of all the subfigures are in logarithmic scale, and the Y axes of Figures 5.4 and 5.6 show the
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actual receiver-side SINR minus the target SINR. In the feasible condition, all links’ transmission

power will converge to the fixed point. The SINR will first converge to a point equal to γ/ρ and

then to the target point γ. In the case of infeasibility where link 3 has the maximum receiver-

side interference, link 3 will reach out to its maximum transmission power and keep unchanged.

Once the transmission power of link 3 reaches its maximum, other links will converge quickly and

reach their target SINR γ. Thus, the divergence of Foschini-Miljanic algorithm demonstrates the

necessity of scheduling from another perspective.

Now we evaluate the concurrency benefit of power control. We assume the gain of every link

in the system is an independent exponentially-distributed random variable with the expected gain

matrix as (5.22), and a link’s instantaneous channel gain changes across different time slots. Then,

we solve Problem (5.13) for the case when all links transmit with a constant transmission power

irrespective of the channel gains, as well as the case when all the links transmit with an optimal

transmission power based on the instantaneous channel gain. We run the study for 1,000 time

slots. For each link, we calculate the percentage of time slots when it is scheduled to transmit

while having its required SINR met, and denote it as the transmission probability. We repeat the

study for 10 times and obtain statistical results for each link. Figure 5.7 show the concurrency for

the constant power and optimal power respectively, and Figures 5.8 and 5.9 show the transmission

probability for each single link. We see that, when the optimal transmission power is used, the

concurrency has been improved greatly.

5.4 Distributed Scheduling and Power Control in Dynamical Networks

We now discuss the effect and limitation of joint scheduling and power control in dynamic

networks. For comparison, we introduce a general framework of distributed scheduling and power

control. In this framework, we adopt the scheduling strategy of silencing closing-by links. Power

control algorithms such as fractional power control [23] are used to evaluate their performance in

responding to channel dynamics. But before diving into more details, we would like to investigate

the characteristics of channel dynamics.
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5.4.1 Channel dynamics

Shadowing and multi-path fading are main sources of channel dynamics. For the purpose

of analysis, statistical models are generally used. Although statistical models cannot perfectly

represent actual systems, these models allow us to obtain a clearer perspective and understanding

of wireless communication systems. In statistical models, shadowing and multi-path fading are

generally modeled by two independent variables. Under this model, we can have the received

power as

prv(t) = ptr(t)l(t)h(t), (5.23)

Where ptr and prv are the transmission power and reception power respectively, l(t) denotes shad-

owing, and h(t) denotes multi-path fading. Shadowing is usually modeled as a random variable

with log-normal distribution. Typical fading distributions are Rician fading, Rayleigh fading, and

Nakagami fading [12]. Different models are applicable to different scenarios. When there is a

line-of-sight path between the transmitter and receiver, or there is a specular path between the

transmitter and receiver, the channel is represented by a Rician fading model. When there is no

main path component, we can think of the channel consisting of many small paths, and the Rayleigh

fading model is the most widely used model in this case. The Nakagami model is known to provide

a closer match to some measurement data than Rayleigh and Rician distributions do [13]. Rayleigh

fading is widely used for modeling multi-path fading due to its exponential distribution as follows:

h(x, t) =
1

Ωp
exp{−x(t)

Ωp
}. (5.24)

In the model above, the distribution is modeled as i.i.d over time t. However, in reality, the

measured fading in each time instant is correlated. For the Rayleigh multi-path fading channel,

the variability over time is reflected in its auto-correlation function (ACF) and the corresponding

normalized ( unit variance) continuous-time function are as follows

R(τ) = J0(2πfdτ) (5.25)

where J0(.) is the zero-order bessel function, fd is the maximum Doppler frequency in Hertz, and

τ is the time delay.
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The coherence time can be computed as Tc = 2.4/fd if considering the first zero point of J0(.).

In a time-division system, auto-regression (AR) model can be be used to approximate Rayleigh

fading channel as follows

hii(t+ 1) =

Tc∑
m=1

amhii(t−m− 1) + ε(t+ 1), (5.26)

where Tc is the AR order, am is the auto-correlation coefficient, and ε(t + 1) is the variance of

Gaussian White Noise with mean value 0.

As revealed in [80], to accurately model the Rayleigh fading channel, the AR order R is required

to be larger than coherence time. In this paper, we consider the time correlation of channel dynamics

rather than adopting independent and identically distributions.

5.4.2 Distributed approach for joint scheduling and power control

We now introduce a distributed framework for joint scheduling and power control. This frame-

work was first proposed for guaranteeing instantaneous SINR in the settings of slight channel

variations [81]. Here we use the framework to explore the behavior and challenges of joint schedul-

ing and power control for ensuring per-packet SINR and reliability in settings of large/complex

channel variations.

Input: P 1
i , K1

i , γ

Output: pti, x
t
i

Ḡi,j = MeasureAverageChannel();

for t← 1 to T do
γti = MeasureSINR(pti, x

t
i);

(pt+1
i , kt+1

i ) = UpdateSchedulingKandPower(pti, k
t
i , γ

t
i , γ);

xti = NAMAScheduling(kti , Ḡi,j);

end
Algorithm 3: A distributed framework for joint scheduling and power control

As presented in Algorithm 3, this framework consists of SINR measurement, PRK-model adap-

tation [82], power control, and NAMA scheduling [65]. SINR measurement means that the receiver

of each link will measure the SINR of its received signal. Zhang et al. in [82] presented a detailed

method of how the receiver’s SINR can be measured. NAMA scheduling is a simple approach
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to channel access scheduling for wireless networks. It calculates a priority for each link at each

time slot. The link with the highest priority among a set of conflicting links will be scheduled to

transmit at each time slot. So once we have the PRK model parameter K for each link (which

specifies a guard area around receiver of each link), we can build the conflict graph, and then the

NAMA scheduling will determine which links can transmit. First we have the initial scheduling K

and run NAMA scheduling to determine if a link can transmit. Then the SINR measurement will

obtain the current SINR. Based on the measured SINR, scheduling and power control will obtain

a guard area specified by the PRK model parameter K and update the transmission power. Based

on the guard-area parameters, each link will be able to build a conflict graph and run the NAMA

scheduling again. The process repeats to schedule data transmissions over time.

5.4.3 Simulation study

Simulation scenario. We simulate a random network with Poisson Point Process of density

λ = 0.01 in a square area of [100m, 100m], where the number of nodes is 100. Each node is a

sender, and its receiver is randomly chosen among all the nodes within 5 meters.

Channel settings. We adopt the power law pass loss model and the path loss index is set as

α = 3.5. The multi-path fading is modelled as correlated Rayleigh fading with AR order set as

Tc = 0, 10, 100. Tc = 0 means that the channel is i.i.d.

Scheduling algorithm. We consider the impact of guard area. To facilitate the experimental

analysis, the scheduling K doesn’t adjust on the fly. We set the scheduling K as different fixed

values K = 1, 2, 3, 4, 5, 6 and study their impact.

Power control algorithm. We adopt the strategies of constant transmission power and

fractional power control algorithm for this study, with fractional power control widely used in

existing cellular networks.

Simulation results. First, we discuss the impact of scheduling. We set the transmission power

as constant. As shown in Figure 5.10, concurrency has improved from average 30 links to 50 links

when the guard area K changes from 6 to 1. However, Figure 5.11 shows an interesting result that,



www.manaraa.com

78

0 200 400 600 800 1000

Time, t

20

30

40

50

60
C

o
n
c
u
rr

e
n
c
y

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

Figure 5.10: Currency improvement in large networks under different guard area K

for a typical link, its transmission probability (or percentage of time slots when the link is scheduled

to transmit) may not change for some Ks such as 3, 4, 5, and 6. That is because, even though

the overall transmission probability across the network nodes decreases as K increases, the set of

interfering links in the guard zone around a specific link may not change for every change of K. In

addition, scheduling K significantly affects a link’s instantaneous SINR as shown in Figures 5.12

and 5.13, with the receiver-side SINR increasing with K. However, there is significant variation in

SINR for every K configuration, for instance, up to 13dB. In addition, we have observed that given

the network setting, it can take around two minutes to obtain the optimal solution. In contrast,

our distributed approach can obtain the scheduling K in a much faster way.

Next, we focus on the case of K = 3 and discuss the impact of power control. We compare

constant power and fractional power since optimal power is unavailable in a distributed scheme. As

shown in Figure 5.14 and 5.15, the fractional power helps make SINR variation smaller as compared

with constant transmission power. However, the SINR variation is still non-negligible in the case
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of fractional power control. This is in part because fractional power control only adapts to channel

attenuation and doesn’t target to regulate SINR. In terms of concurrency, fractional power control

also enables slight improvement over constant power, as shown in Figure 5.16.

Lastly, we discuss SINR changes under different time scales of channel dynamics in the case of

fractional power control. We find only slight differences in SINR are observed for different time

scales of channel dynamics as presented by the SINR CDF in Figure 5.17 for a typical link with K

= 3.

At first sight, this result is beyond our expectation. However, it becomes reasonable when

we find that the channel variations are still large even when Tc = 100. This result exposes the

challenges of distributed scheduling and power control. When the channel variation is large, current

power control algorithms cannot regulate the SINR to a small range. Meanwhile, due to the

randomness of NAMA scheduling, the spatial distribution and number of interfering links can

change significantly, leading to significant variations in the accumulated receiver-side interference

and SINR.
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In summary, sacrificing concurrency (e.g., by expanding the guard area) can help increase

receiver-side SINR. For more precise control of receiver-side SINR to smaller variations, mechanisms

shall be designed to regulate the impact of the large variations in channel gains and to mitigate the

randomness in NAMA scheduling. Detailed study of these will be good avenues for future research.

5.5 Conclusion

Towards developing field-deployable approaches to joint scheduling and power control in en-

suring per-packet communication reliability, we analyze the roles of scheduling and power control

as well as their interactions in ensuring per-packet communication reliability and high network

throughput, and we evaluate a candidate framework of distributed implementation. Our main

contributions are as follows:

• By investigating properties of the interference gain matrix, we for the first time demonstrate

the relationship between scheduling and power control, and SINR feasibility of individual

links. The characteristics of gain matrices are such that close-by links have significant impact

on the power control SINR feasibility of a link, which suggests that silencing close-by links

would be a promising scheduling strategy of ensuring power control SINR feasibility as well

as high communication concurrency and throughput.

• We present the exact picture of how power control can help improve transmission concurrency

by comparing scheduling with constant transmission power and optimal transmission power

respectively in dynamic networks. The significant improvement indicates that there is a big

potential for power control to help compensate for the sacrifice that scheduling algorithm

usually bring to ensure reliability.

• We evaluate the behavior of a candidate framework in achieving SINR requirements in differ-

ent channel dynamics settings. Our evaluation demonstrates the challenges of field-deployable

joint scheduling and power control for ensuring predictable per-packet SINR and reliability, for

instance, the limited capability of well-known power control algorithms (e.g., constant power



www.manaraa.com

84

and fractional power) in regulating SINR variations. The study suggests a few promising

future directions of research, for instance, addressing the randomness of NAMA scheduling.
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CHAPTER 6. CONCLUSION AND FUTURE RESEARCH

6.1 Conclusions

In this dissertation, power control technique and reliability issue in cyber-physical systems have

been studied. We started our investigation from cellular networks and explore all power control

techniques that have been adopted in commercial cellular networks, like 2G, 3G and 4G. We found

that power control techniques in cellular networks are applicable to cyber-physical systems but

new challenges are observed as well, such as the ad-hoc architecture and harsh channel environ-

ments. Through this dissertation, we have focused our research on addressing channel dynamics

and conduct distributed implementation of joint power control and scheduling.

First, we considered to build a system model and distributed power control framework to address

channel dynamics and guarantee reliability. The theoretical results of power control in deterministic

channel have been analyzed. We observed that the normalized interference is directly related to

the Perron root and feasibility. Once the interference is bounded, the Perron root will be bounded.

By this observation, we adopted the PRK model and NAMA scheduling as the foundation of the

framework. In this framework, scheduling and power control will alternatively run. The feasibility

of the proposed framework has been proved by analytical approach. This adaptive power control

framework will be a foundation for distributed power control and scheduling algorithms.

Secondly, given the adaptive framework, we proposed a distributed implementation algorithm

considering small-scale channel variation, where scheduling K and transmission power will be

adapted over time. We have conducted experiments and verified that this algorithm enables dis-

tributed convergence in joint scheduling and power control with advantages in the ease of imple-

mentation, significant improvement in concurrency and SINR guarantees. The proposed algorithm

is expected to serve as a foundation for distributed scheduling and power control as the penetra-



www.manaraa.com

86

tion of IoT applications expands to scenarios where both the network capacity and communication

reliability are critical.

Furthermore, we considered the reliability issue in large-scale channel dynamics. We found that

power control is limited in solving large-scale channel dynamics, which means that channel varia-

tion may be fast and the scale is large beyond a couple of dbm in mobile settings. By investigating

properties of the interference gain matrix, we for the first time demonstrated the relationship among

scheduling, power control and SINR feasibility of individual link. We have suggested that silencing

close-by links would be a promising scheduling strategy of ensuring power control SINR feasibility

as well as high communication concurrency and throughput. We presented the exact picture of how

power control can help improve transmission concurrency by comparing scheduling with constant

transmission power and optimal transmission power respectively in dynamic networks. The signif-

icant improvement indicates that there is a big potential for power control to help compensate for

the sacrifice that scheduling algorithm usually bring to ensure reliability. Our evaluation demon-

strates the challenges of field-deployable joint scheduling and power control for ensuring predictable

per-packet SINR and reliability, for instance, the limited capability of well-known power control

algorithms (e.g., constant power and fractional power) in regulating SINR variations. The study

suggests a few promising future directions of research, for instance, addressing the randomness of

NAMA scheduling.

6.2 Future Work

In general, power control is an important tool for optimizing network performance. However,

the adoption of power control faces the tradeoff between optimization performance and overhead.

Moreover, power control alone cannot guarantee communication reliability. There are still many

open problems. For instance, how to enable distributed scheduling, power control, and rate con-

trol in the presence of non-local co-channel interference remains a major challenge. The use of

reinforcement-learning to solve joint power control and rate control problem would be another

direction.
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While 5G networks are trying to build a ubiquitous network (including supporting cyber-

physical systems), how to ensure predictable communication reliability remains an open question,

and many of the issues studied in this dissertation will apply, even though in the context of the

cellular architecture instead of ad-hoc network architecture.
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[44] M. M. Halldórsson and T. Tonoyan, “The price of local power control in wireless scheduling,”
arXiv preprint arXiv:1502.05279, 2015.

[45] T. Kesselheim, “A constant-factor approximation for wireless capacity maximization with
power control in the sinr model,” in Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2011,
pp. 1549–1559.

[46] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He, “ATPC: Adaptive transmission
power control for wireless sensor networks,” in Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems. ACM, 2006, pp. 223–236.

[47] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless chan-
nels with outage-probability specifications,” IEEE Transactions on Wireless Communications,
vol. 1, no. 1, pp. 46–55, 2002.

[48] T. Holliday, A. Goldsmith, N. Bambos, and P. Glynn, “Distributed power and admission
control for time-varying wireless networks,” in Proc. 2004 IEEE Global Telecommun. Conf.,
vol. 2, 2004, pp. 768–774.

[49] M. Chiang, C.-W. Tan, D. P. Palomar, D. O’Neill, and D. Julian, “Power control by geometric
programming,” IEEE Transactions on Wireless Communications, vol. 6, no. 7, pp. 2640–2651,
2007.



www.manaraa.com

92

[50] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,”
Optimization and engineering, vol. 8, no. 1, p. 67, 2007.

[51] R. Rashtchi, R. H. Gohary, and H. Yanikomeroglu, “Routing, scheduling and power allocation
in generic ofdma wireless networks: Optimal design and efficiently computable bounds,” IEEE
Transactions on Wireless Communications, vol. 13, no. 4, pp. 2034–2046, 2014.

[52] J. Dams, M. Hoefer, and T. Kesselheim, “Convergence time of power-control dynamics,” in
International Colloquium on Automata, Languages, and Programming. Springer, 2011, pp.
637–649.

[53] A. Abdallah, M. M. Mansour, and A. Chehab, “Power control and channel allocation for
d2d underlaid cellular networks,” IEEE Transactions on Communications, vol. 66, no. 7, pp.
3217–3234, 2018.

[54] W. Wang, F. Zhang, and V. K. Lau, “Dynamic power control for delay-aware device-to-device
communications,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp.
14–27, 2014.

[55] M. Haenggi, R. K. Ganti et al., “Interference in large wireless networks,” Foundations and
Trends R© in Networking, vol. 3, no. 2, pp. 127–248, 2009.

[56] E. Chong and S. Zak, An Introduction to Optimization, ser. Wiley Series in
Discrete Mathematics and Optimization. Wiley, 2011. [Online]. Available: https:
//books.google.com/books?id=THlxFmlEy AC

[57] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 2.

[58] A. Hasan and J. G. Andrews, “The guard zone in wireless ad hoc networks,” IEEE Transactions
on Wireless Communications, vol. 6, no. 3, pp. 897–906, 2007.

[59] T. Moscibroda, R. Wattenhofer, and Y. Weber, “Protocol design beyond graph-based models,”
in Proc. of the ACM Workshop on Hot Topics in Networks (HotNets-V). Citeseer, 2006, pp.
25–30.

[60] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile Com-
puting and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[61] H. Zhang, X. Che, X. Liu, and X. Ju, “Adaptive instantiation of the protocol interference
model in wireless networked sensing and control,” ACM Transactions on Sensor Networks
(TOSN), vol. 10, no. 2, p. 28, 2014.

[62] R. Maheshwari, S. Jain, and S. R. Das, “A measurement study of interference modeling and
scheduling in low-power wireless networks,” in Proceedings of the 6th ACM conference on
Embedded network sensor systems. ACM, 2008, pp. 141–154.

https://books.google.com/books?id=THlxFmlEy_AC
https://books.google.com/books?id=THlxFmlEy_AC


www.manaraa.com

93

[63] B. Katz, M. Völker, and D. Wagner, “Link scheduling in local interference models,” in Inter-
national Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks
and Distributed Robotics. Springer, 2008, pp. 57–71.

[64] H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, F. Lin, L. Y. Wang, and G. Yin, “Scheduling with
predictable link reliability for wireless networked control,” in 2015 IEEE 23rd International
Symposium on Quality of Service (IWQoS). IEEE, 2015, pp. 339–348.

[65] L. Bao and J. Garcia-Luna-Aceves, “A new approach to channel access scheduling for ad hoc
networks,” in Proceedings of the 7th annual international conference on Mobile computing and
networking. ACM, 2001, pp. 210–221.

[66] M. Nixon and T. Round Rock, “A comparison of wirelesshart and isa100. 11a,” Whitepaper,
Emerson Process Management, pp. 1–36, 2012.

[67] J. Baillieul and P. J. Antsaklis, “Control and communication challenges in networked real-time
systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 9–28, 2007.

[68] J. R. Moyne and D. M. Tilbury, “The emergence of industrial control networks for manu-
facturing control, diagnostics, and safety data,” Proceedings of the IEEE, vol. 95, no. 1, pp.
29–47, 2007.

[69] M. Pajic, S. Sundaram, G. J. Pappas, and R. Mangharam, “The wireless control network: A
new approach for control over networks,” IEEE Transactions on Automatic Control, vol. 56,
no. 10, pp. 2305–2318, 2011.

[70] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu, and Y. Chen, “Schedulabil-
ity analysis under graph routing in wirelesshart networks,” in Real-Time Systems Symposium,
2015 IEEE. IEEE, 2015, pp. 165–174.

[71] S. Petersen and N. Aakvaag, “Wireless instrumentation for safety critical systems. technology,
standards, solutions and future trends,” 2015.

[72] “Ieee standard for low-rate wireless networks,” IEEE Std 802.15.4-2015 (Revision of IEEE Std
802.15.4-2011), pp. 1–709, April 2016.

[73] S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold
scheduling on ad hoc networks,” IEEE Transactions on Information Theory, vol. 53, no. 11,
pp. 4127–4149, 2007.

[74] H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, L. Y. Wang, F. Lin, and G. Yin, “Scheduling with
predictable link reliability for wireless networked control,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 6135–6150, 2017.



www.manaraa.com

94

[75] Y. Xie, H. Zhang, and P. Ren, “Unified scheduling for predictable communication reliability
in industrial cellular networks,” in 2018 IEEE International Conference on Industrial Internet
(ICII). IEEE, 2018, pp. 129–138.

[76] C. Li, H. Zhang, J. Rao, L. Y. Wang, and G. Yin, “Cyber-physical scheduling for predictable
reliability of inter-vehicle communications,” in 2018 IEEE/ACM Third International Confer-
ence on Internet-of-Things Design and Implementation (IoTDI). IEEE, 2018, pp. 267–272.

[77] Y. Chen, H. Zhang, N. Fisher, L. Y. Wang, and G. Yin, “Probabilistic per-packet real-time
guarantees for wireless networked sensing and control,” IEEE Transactions on Industrial In-
formatics, vol. 14, no. 5, pp. 2133–2145, 2018.

[78] J. A. Gutierrez, E. H. Callaway, and R. L. Barrett, Low-rate wireless personal area networks:
enabling wireless sensors with IEEE 802.15. 4. IEEE Standards Association, 2004.

[79] P. Chanchana et al., “An algorithm for computing the perron root of a nonnegative irreducible
matrix,” 2007.

[80] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,”
IEEE Transactions on Wireless Communications, vol. 4, no. 4, pp. 1650–1662, 2005.

[81] L. Wang, H. Zhang, and P. Ren, “Distributed scheduling and power control for predictable iot
communication reliability,” in ICC 2018. IEEE International Conference on Communications.
IEEE Societies. IEEE, 2018.

[82] H. Zhang, X. Liu, C. Li, Y. Chen, X. Che, L. Y. Wang, F. Lin, and G. Yin, “Scheduling with
predictable link reliability for wireless networked control,” IEEE Transactions on Wireless
Communications, vol. 16, no. 9, pp. 6135–6150, Sept 2017.


	Power control for predictable communication reliability in wireless cyber-physical systems
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Wireless Cyber-physical Systems
	1.2 Wireless Communication Reliability
	1.2.1 Path loss, shadowing and multipath fading
	1.2.2 Co-channel interference
	1.2.3 SINR model

	1.3 Cross-layer Design for Communication Reliability
	1.3.1 Power control in cellular networks
	1.3.2 The canonical power control
	1.3.3 Power control in dynamical networks
	1.3.4 Joint scheduling and power control

	1.4 Dissertation Contribution
	1.5 Dissertation Organization

	2. LITERATURE REVIEW
	2.1 A Simple Power Control Algorithm
	2.2 Power Control in Wireless Sensor Networks
	2.3 Optimization of Joint Scheduling and Power Control
	2.4 Address Channel Dynamics using Power Control
	2.5 Power Control for System Performance Improvement 
	2.6 Conclusion

	3. A PHYSICAL-RATIO-K MODEL-BASED POWER CONTROL FRAMEWORK
	3.1 Introduction
	3.2 System Model
	3.3 Key Theoretical Results
	3.3.1 Feasible and optimal power control
	3.3.2 In-feasibility of power control

	3.4 Representative Power Control Schemes
	3.4.1 Conflict graph-based power control for constant channels
	3.4.2 Geometric programming-based power control for fading channels

	3.5 The Adoption of Physical-Ratio-K Model
	3.6 Proposed Joint Scheduling and Power Control Framework
	3.6.1 Observations on Perron Root
	3.6.2 The Framework

	3.7 Conclusion

	4. DISTRIBUTED SCHEDULING AND POWER CONTROL FOR IOT RELIABILITY
	4.1 Introduction
	4.2 System Model and Problem Formulation
	4.3 Preliminary Adaptive Power Control
	4.4 Proposed Distributed Scheduling K and Power Control 
	4.4.1 The definition of feasible K 
	4.4.2 The distributed algorithm

	4.5 Simulation Results
	4.5.1 Convergence property
	4.5.2 Adaptation to dynamic Channels
	4.5.3 Concurrency

	4.6 Conclusion

	5. ANALYSIS OF JOINT SCHEDULING AND POWER CONTROL FOR PREDICTABLE URLLC IN INDUSTRIAL WIRELESS NETWORKS
	5.1 Introduction
	5.2 Scheduling with Close-By Links Silent
	5.2.1 Need for Scheduling
	5.2.2 Strategy of silencing closed-by links 
	5.2.3 Guard-area based scheduling in time-varying networks

	5.3 Why Power Control?
	5.3.1 Revisit Foschini-Miljanic's algorithm
	5.3.2 Concurrency and outage probability improvement by power control
	5.3.3 Numerical analysis

	5.4 Distributed Scheduling and Power Control in Dynamical Networks
	5.4.1 Channel dynamics
	5.4.2 Distributed approach for joint scheduling and power control
	5.4.3 Simulation study

	5.5 Conclusion

	6. CONCLUSION AND FUTURE RESEARCH
	6.1 Conclusions
	6.2 Future Work

	BIBLIOGRAPHY

